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ABSTRACT 

This study investigates the high frequency response of Faraday effect optical fiber current 
sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical 
models were developed for several configurations of planar (collocated turns) and travelling 
wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the 
model predictions. High frequency operation above 500 MHz, with good sensitivity, was 
demonstrated for several current sensors; this frequency region was not previously considered 
accessible by fiber devices. 

Planar fiber coils in three configurations were investigated: circular cross section with 
the conductor centered coaxially; circular cross section with the conductor noncentered; and 
noncircular cross section with arbitrary location of the conductor. Centered, circular coil 
sensors have a frequency response easily characterized by light transit time. In this category, 
a 20-turn, 6.4mm diameter annealed fiber sensor was tested up to 1 GHz. It has a 3dB 
bandwidth of approximately 230 MHz and a sensitivity-bandwidth product of approximately 0.8 
MHz-“/A. Both noncentered coils and noncircular coils exhibit a resonant response at the higher 
frequencies that mimics the response of tapped, recirculating fiber delay lines. Coils with large 
eccentricity in the cross section feature the same sensitivity in the resonance bands as they do 
at low frequencies. This frequency response was successfully modeled using a point interaction 
between the magnetic field and the light in the fiber. 

The helical travelling wave fiber coils were immersed in the dielectric of a coaxial 
transmission line to improve velocity phase matching between the field and light. Three liquids 
(propanol, methanol, and water) and air were used as transmission line dielectrics. Complete 
models, which must account for liquid dispersion and waveguide dispersion from the multilayer 
dielectric in the transmission line, were developed to describe the Faraday response of the 
travelling wave sensors. Large enhancements in current sensor bandwidth are possible without 
a loss in system sensitivity. A maximum bandwidth of approximately 300 MHz was achieved 
in a water-dielectric sensor cell containing a 14-turn coil with a 3 cm diameter and a 3 cm 
helical pitch. This sensor has a sensitivity-bandwidth product of approximately 1.08 MHz-°/A. 

Other travelling wave current sensors with potentially greater Faraday sensitivity, wider 
bandwidth and smaller size are investigated using the theoretical models developed for the 
singlemode fiber coils. 
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CHAPTER 1 

INTRODUCTION 

The use of optical methods to measure environmental parameters and physical 

quantities is becoming highly commonplace in today's technology. Optical sensors, or 

more commonly photonic or fiber optic sensors, can perform very sensitive 

measurements often with the inherent speed afforded by the optical processes and with 

the added advantage of making remote and nonperturbing interrogations. In recent years, 

photonic sensing has found use in applications for characterizing electromagnetic (EM) 

quantities [ 1-31. Here, the reduced interference of the optical or dielectric media serves a 

dual purpose: the presence of the instrumentation, or sensor, does not perturb the 

environment being measured like conductive materials often can; and the measurement 

itself is EM1 (electromagnetic interference) -proofed, the environment does not perturb 

the measurement. This property has been the main reason that optical technology is 

being developed for detection of EM parameters, since in general, photonic sensors have 

yet to attain the high frequency sensitivities or the sensitivity-bandwidth products 

achieved by the conventional techniques. This is particularly true for electrical current 

sensors. Wideband operation that extends well into the microwave region (beyond 500 

MHz) is desired while maintaining reasonable current detection sensitivity. 

Conventional wideband electrical probes use an inductive loop or inductive 

transformer to sense current. These devices are quite sensitive, capable of measuring less 

than 1 mA near their upper frequency limit of - 1 GHz [4]. However, extending probe 

frequency response much beyond 1 GHz is unlikely due to the inductance associated with 

the transduction technique. Other conventional methods exist that measure steady state 

currents at RF and microwave frequencies (tens of GHz); most have applications for 

determining weapon component susceptibility and ordnance safety. These probes sense 

the thermal rise produced by Joule heating when current passes through a resistance point 
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in the conduction path. Most common are electrical thin film thermocouples and 

thermistors used to measure currents in electroexplosive devices (EEDs) [5]. Fiber optic 

thermometric techniques have been developed that replace the thermocouple/thermistor 

to determine currents and powers in EEDs or substitute resistors [6]. These hybrid 

optical-electrical sensors still incur some signal perturbations, and since they record only 

the magnitude of the RF currents they are incapable of measuring transients faster than 

the thermal response time. 

Two competing optical techniques can be used to measure magnetic field or 

tun-ent waveforms: magnetostriction and Faraday rotation. Each has its advantages [3], 

and both have been adapted to optical fiber current sensing. In magnetostrictive sensors 

[7] an external magnetic field produces a deformation or strain in a magnetostrictive 

material that is in intimate contact with a singlemode fiber. The strain is transferred to 

the fiber creating perturbations in geometry and refractive index. Deviations in the 

optical path length are sensed interferometrically. This technique is quite sensitive; 

magnetic fields as small as 0.07 pT/& have been detected [8]. However, bandwidths 

are generally limited to a few tens of kilohertz because of the mechanical movement 

required in the magnetostrictive material. Sensors with frequency response beyond 1 

MHz have been constructed by mixing the signal with a field from an RF oscillator [9]; 

the detection band is shifted to a higher center frequency but the detection bandwidth 

remains unchanged. 

The Faraday effect, on the other hand, is an inherently fast optical process in most 

materials. In the sensing medium, the magnetic field produces a rotation in the plane of 

polarization of the propagating light. Field and current sensors which exploit this fast 

process have been reported [ 10-141. Measurement at frequencies above 1 MHz are easily 

accomplished, although response sensitivities do not approach those of the 

magnetostrictive sensors. The strength of the Faraday interaction is relatively weak in 

most materials. Common silica optical fibers exhibit particularly small rotations per unit 
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length. As a result, fiber sensors have mainly been used to measure kiloampere or 

megampere currents [15] most notably produced in the power generation [16-171 and 

fusion research [ 1 1,18-201 industries. (In these applications high electrical isolation is 

definitely a benefit.) 

Much effort in recent years has concentrated on improving the sensitivity of 

Faraday effect fiber current sensors. Sensitivity is improved by increasing the interaction 

length between the field and the light or by using materials that produce a larger Faraday 

rotation per unit length (possess a larger Verdet constant). Longer fiber lengths, 

however, often lead to large, bulky sensors while limiting bandwidth due to light transit 

time. Recent investigations into fiber annealing [21,22], circularly-birefringent [23] and 

elliptically-birefringent [24] singlemode fibers, higher Verdet constant fibers [25-271, 

and other special fiber processes [28,29] have allowed for the fabrication of small, 

sensitive multiturn coils and provided the direction needed to achieve subampere current 

detection using optical fiber systems. 

Other material studies have identified the ferromagnetic (or ferrimagnetic) 

crystals such as the iron garnets [12,13,30,31] and paramagnetic crystals such as 

CdMnTe [ 10,321 as possessing excellent Faraday sensitivity for field sensing 

applications. Rotation sensitivity in these crystals exceed that in silica by more than 

three orders of magnitude. Also, one current sensor configuration has recently been 

developed using the fei-romagnetics [30]. The huge increase in detection sensitivity, 

however, often means that frequency response is reduced due to the required 

reorientation times of the magnetic ions or domains in the optical material. 

The tradeoff between sensitivity and bandwidth is apparent in all classes of 

magneto-optic materials and processes and, subsequently, in any field or current sensor 

that utilizes them. Diamagnetic glasses and crystals (silica fibers belong to this group) 

have small Faraday sensitivities but possess extremely wide material bandwidths. For 

this reason, optical fiber current sensors are always limited in high frequency response by 

3 



the transit time of the light through the fiber. Thus, tradeoffs between sensitivity and 

bandwidth require compromising on fiber length. For most applications the required 

current detection sensitivity determines the fiber and coil parameters and response 

bandwidth is estimated from the fiber length. This practice is widely accepted, and little 

attention is given to bandwidth considerations during sensor design unless large currents 

are being detected. However, many current monitoring applications require wideband 

detection of milliampere-level signals. Faraday effect sensors, and particularly optical 

fiber sensors, have the potential to fill these needs should their high frequency response 

be better understood. 

A formal characterization of the frequency response of fiber current sensors, 

including expressions for 3 dB bandwidth and the sensitivity-bandwidth relationship, has 

recently been presented [33]. The theoretical discussions in Ref. 33 are mostly limited to 

the simplest of fiber sensor coils, those that are circular and concentric with the current 

conductor. In addition, experimental measurements are performed on a single coil at 

frequencies up to 5 MHz, which is limited to just above the sensor 3 dB bandwidth. 

In this study a complete picture is given for the high frequency response of 

Faraday effect fiber current sensors. Theoretical models are generated and response 

functions are measured for many different fiber coil configurations. These include 

sensors with planar, circular coils centered on the axis of the current conductor; circular 

sensing coils with the axes displaced from that of the conductor; noncircular or elongated 

fiber coils with concentric and displaced axes; and helical coils aligned coaxially with the 

conductor. Varying coil diameters and the number of coil turns further extends each 

category. Many other configurations (some of them non-physical) are explored 

theoretically to provide further insight into current sensor models. Measurements are 

made for frequencies between 1 MHz and 1 GHz. For many sensor coils this represents 

frequencies well above the 3 dB bandwidth and the response function cutoff frequency. 

Fiber current sensing in this frequency range has not been demonstrated or reported 
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previously. 

Planar fiber coil sensors - those with collocated or closely assembled turns - 

have well-defined bandwidths as determined primarily by light transit time. 

Manipulations of the coil cross section or off-center placement of the conductor axis 

within the coil introduces response resonances at higher frequencies. These can be 

exploited for narrowband current sensing; demonstration of the technique is performed at 

frequencies above 500 MHz. Within the high frequency bands, relative increases in 

detection sensitivity occur, while the bandwidth remains as described by the lower 

frequency response. 

The fundamental bandwidth limitation dictated by the light transit time in the 

fiber current sensor can be overcome by using travelling wave techniques. Improved 

phase matching between the propagating magnetic field and the light in the fiber is 

accomplished by spreading the coil turns in a helix then immersing the coil in the 

dielectric of a coaxial transmission line. This can be accomplished without a loss in 

measurement sensitivity, thereby increasing the sensitivity-bandwidth product of the 

Faraday effect current sensor. Demonstrations of the technique use liquids as the 

dielectric medium in the slow-wave transmission line structure. Measured bandwidths of 

300 MHz with bandwidth enhancements of greater than four (compared to planar coils) 

are reported. Because of the orientation of the magnetic field relative to the light in the 

fiber, phase matching in a Faraday effect travelling wave current sensor is much more 

difficult to achieve than in electro-optic travelling wave field sensors. Perfect phase 

matching is virtually impossible to attain, although an optimum set of sensor travelling 

wave parameters exists such that large bandwidth enhancements are achievable. 

Following this introduction, Chapter 2 gives an overview of the Faraday effect in 

bulk optics and optical fibers with specific applications to current sensing. Limitations 

on measurement sensitivity and bandwidth are discussed in relation to material 

properties, fiber birefringences, and common system noise sources. Chapter 3 presents 
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the general theoretical description of the frequency dependence of the Faraday rotation in 

fiber current sensors when light transit time through the fiber is the constraining factor. 

These mathematical developments are then continued in the later chapters as specific 

model responses are generated for particular fiber sensor coil configurations. After 

Chapter 3, this document branches in two fundamental directions. Chapters 4 through 7 

cover fiber current sensors that utilize planar coils, while Chapters 8 through 12 discuss 

travelling wave fiber sensors with helically shaped coils. 

The details of experimental hardware and procedures are presented in Chapter 4. 

Included among the hardware is the expanded coaxial transmission cells that contain the 

fiber coils and produce the magnetic fields [34]. Additional discussion about these cells 

is given in Appendix A. Many of the apparatus and procedural details related in Chapter 

4 and Appendix A also apply to the travelling wave sensors. Starting with Chapter 5 ,  

mathematical models and experimental measurements of the frequency dependent 

Faraday response are presented for specific categories of fiber coil configurations. 

Chapter 5 covers circular coil sensors with the current conductor centered in the coil 

cross section. Several coils with varying geometry are characterized, highlighted by 

testing of a small diameter (6.4 mm) annealed coil sensor. Noncentered, circular coil 

sensors are discussed in Chapter 6. This discussion includes theoretical response 

predictions for a sensor system with the conductor totally outside the coil cross section. 

Chapter 7 presents fiber coils with noncircular cross sections. "Delta function" or point 

interaction models are developed from a highly eccentric coil geometry. Rectangular 

coils are used to describe the Faraday response in generic noncircular fiber sensors. 

Important in the accurate determination of current sensor frequency response is the 

inclusion of effects due to the fiber coil leads. Appendix B gives an exact mathematical 

treatment of these lead effects for a planar coil geometry. 

Chapter 8 begins the study of the travelling wave fiber current sensors with a 

discussion of the basic sensing concepts. Bandwidth enhancement is a key element in the 
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use of the travelling wave configurations and performance criteria are established in this 

chapter. The experimental travelling wave transmission cells are presented in Chapter 9. 

Cells contain either air as a dielectric or one of three liquid dielectrics: 1-propanol, 

methanol, or water. The peculiarities associated with precise sensor response modeling 

for the liquid travelling wave structures are detailed in Chapter 10. Complete models are 

developed and include effects created by liquid dispersion, waveguide dispersion and 

multimoding in the coaxial transmission cells, and relative permittivity perturbations due 

to fibcr coil supports. Mathematical supplements to the models are provided by 

Appendices C and D which derive the effective relative permittivity in the coaxial lines 

and the waveguide modes in a multilayer dielectric coaxial line with complex relative 

permittivity. Chapter 11 presents the experimental measurements using the fiber 

travelling wave sensors and compares the Faraday response data to model predictions. 

Further enhancements to the bandwidth and high frequency response of Faraday 

effect current sensors are discussed in Chapter 12 for several other travelling wave 

configurations. These include solid dielectric coaxial transmission line structures, 

combination travelling wavehoncentered (or noncircular) fiber coil sensors, helical 

waveguide sensors using higher sensitivity materials, bulk-optic helical-conductor 

travelling wave sensors, and a serpentine, planar waveguide in an RF stripline. Finally, 

Chapter 13 summarizes the high frequency response model predictions and experimental 

measurements for all planar and travelling wave fiber current sensors. 
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CHAPTER 2 

FARADAY EFFECT CURRENT SENSORS 

The Faraday effect is an induced circular birefringence created by a magnetic 

field interacting with an optical medium [35]. The resulting rotation of the plane of 

polarization, 0, of light propagating in a medium of length L is described (in MKS units) 

by 

o =  v f B o d * .  

0 

Only that component of the magnetic flux density, B, which lies in the direction of the 

incremental length, dl, of the light propagation contributes to the effect. The 

proportionality factor, V, is the Verdet constant and determines the strength of the 

interaction created by the field. The Verdet constant is a material parameter that is also 

dependent upon the temperature 1361, the wavelength of the propagating light and the 

modulation frequency of the magnetic field [37,38]. Verdet constants for some common 

materials used in sensors are given in Table 2-1 [39,40]. 

Current sensors using the Faraday effect can be quite simple. Ampere's law states 

that for a static magnetic field H, the current, i, is given by 

Thus, allowing the interrogating light beam to propagate in a loop around the current 

conductor produces a rotation that is independent of the beam path. Optical fibers wound 

in a coil represent an ideal method for directing light around a current carrier. Multiple 
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Table 2-1. 

Verdet Constants for Several Materials Used in Faraday Effect Sensors. 

Parameters were measured at a wavelength of 633 nm and at 25 "C. (Refs. 39,40). 

Material Type V (raarrlm) 

Cd,-,Mn,Te Paramagnetic Crystal 

ZnSe Diamagnetic Crystal 

Bi,Ge30, Diamagnetic Crystal 

FR-5 

FR-4 

SiO, 

SF-57 

Paramagnetic Glass 

Paramagnetic Glass 

Diamagnetic Glass 

Diamagnetic Glass 

-2000 

118 

28.8 

-7 1 

-30.5 

3.6 

20 

turns of the fiber have the effect of amplifying the resulting Faraday rotation. Such a 

sensor has a rotation described simply by 

= p f V N i ,  

where ~4 is the penne 

0 0  

bility of the in eraction medium, usually taken 

(2-3) 

o be that of free 

space since materials are typically nonmagnetic dielectrics, and N is the number of loops 

of optical fiber. Sensitivity to currents can be enhanced even further by using several 

turns of the conductor through the optical fiber coil to increase the magnetic field. The 

zero subscript used in Eq. (2-3) denotes the dc or low frequency rotation produced by a 

static or slowly-varying magnetic field. If the amplitude of the field changes 
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significantly in the time it takes the light to traverse the closed path, then Ampere's law, 

Eq. (2-2), is no longer valid. 

A typical current sensing system using an optical fiber [41] is shown in Fig. 2-1. 

The light output from a laser source is passed through a polarizer injecting linearly 

polarized light into the fiber. Light exiting the fiber is analyzed with a second polarizer 

converting induced rotations to transmitted intensity changes that can be detected by the 

photodiode receiver. The sensing fiber must be singlemode in order to preserve the 

instantaneous polarization state of the light. The measured light intensity, I, for the 

system in Fig. 2-1 when the polarizers are aligned is given by 

I = I, cos200 , (2-4) 

where I, is the maximum transmitted light intensity and 0, is taken from Eq. (2-3). For 

a system using crossed polarizers, the transmitted intensity is 

I = Iosin200 . (2-5) 

For this case, the relative intensity is zero with no current. The intensity reaches a 

Input fiber Output fiber II-pJ- 
Source Det. 

Singlemode fiber Conductor 

Fig. 2-1. 
polarimetric configuration uses singlemode fiber between input and output polarizers. 

A simple optical fiber system for Faraday effect current sensing. This 
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maximum when a current is present that produces a rotation of 0, = ld2, or odd multiples 

of d 2 .  It is obvious from Eqs. (2-4) and (2-5) that a measured intensity could represent 

any number of currents. This has an advantage in current sensing since saturation cannot 

occur as in magnetic core current probes. However, difficulties can be encountered when 

determining large currents where several of these intensity "fringes" are observed. 

Usually in this case, two polarization states 45' apart are monitored simultaneously at the 

fiber output [42]. A ratio of the two detected signals gives an unambiguous 

determination of the current. The relative intensity response of the fiber sensor in Fig. 2- 

1 is plotted in Fig. 2-2 as a function of measured current. The effect of several polarizer 

configurations arc shown. 

Small cui-rents are measured with the greatest sensitivity in a system using input 

and output polarizers oriented at d 4  (45') with respect to one another. The transmitted 

relative intensity at zcro current (see Fig. 2-2) is biased to ?4, and bipolar current signals 

produce an increase or decrease in intensity about this point. More importantly, the 

intensity slope, dI/di, is maximum. If the currents are small enough so that rotations are 

much less than d 4 ,  then measured changes in intensities are linear with changes in 

current. From Fig. 2-2, polarizers aligned at 4 5 '  and -45' produce equivalent intensity 

changes but with different signs. Sensing both of these polarization states simultaneously 

and then taking the difference in intensities produces a measurement with twice the 

sensitivity. A system incorporating this scheme is identical to that in Fig. 2-1, except the 

output polarizers and detectors are arranged as in Fig. 2-3. The polarizing beam splitter 

selects the orthogonal polarization components, one for each photodiode receiver. This 

system has a response with rotation, or current, of 

I = 1 ~ s i n ( 2 @ ~ )  . 

Using this differential detection scheme also reduces system common mode relative 
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I I I 

I I I 

-?i 0 

Current, i (x pfVN) 

Fig. 2-2. The relative intensity response versus current for a polarimetric fiber current 
sensor. (Top) With polarizers aligned and crossed. (Bottom) With polarizers oriented at 
k 45' to one another. 
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Det, 1 

b P  - - - -  - -  ::I z-- - -  

Output fiber --m-- 
Pol. 

Det. 2 

Fig. 2-3. 
Wollaston prism for dual polarization detection. 

The optical output in Fig. 2-1 is split using a beam-splitting polarizer or a 

intensity noise such as carrier fluctuations in semiconductor diode lasers. 

In addition to the polarimetric sensing schemes illustrated in Figs. 2-1 and 2-3, 

optical fiber Faraday effect current sensors can also be constructed using interferometers. 

In particular, the Sagnac interferometer [43], shown in Fig. 2-4, provides a very simple 

method for sensing currents. The counter-propagating beams in the fiber are rotated 

nonreciprocally by the magnetic field resulting in a doubling of the detected response 

compared to the polarimetric sensor. Reciprocal effects produced by some noise sources 

(e.g., laser phase noise and stress-induced polarization changes from temperature drift), 

however, are inherently compensated for when the two signals are combined at the fiber 

coupler. The Sagnac interferometric sensor also has the advantage of not requiring 

external polarizers. Its greatest drawback is that the response is likened to that of crossed 

polarizers in the polarimetric current sensor. The detected intensity is zero with zero 

slope, as shown in Fig. 2-2, when no current is present. Recently, current sensors that 

use the fiber Sagnac interferometer with a 3 x 3 fiber coupler have been studied [a]. 
With this system, it is possible to bias the zero current response to a relative intensity of 

1/3, with a nonzero response slope. This fiber current sensor has many advantages for 

detection of small currents. 

Faraday effect current sensors are not limited to optical fibers, although working 
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Light out r Conductor 

Light in LSinglemode fiber 

Fig. 2-4. A fiber Sagnac interferometer configured as a Faraday effect current sensor. 
The fiber coupler launches two counter-propagating beams of light that are recombined 
at the coupler output for optical detection. 

with fibers is usually much easier. Several glasses have been used to construct sensors 

that either slip around a current conductor or have the conductor pass through a hole in 

them [45,46]. Also, a Ga:YIG (ferromagnetic crystal) sensor, consisting of four separate 

rods that form a path around the conductor, has been developed [30]. For these bulk 

optic sensors, materials are selected that have much higher Verdet constants or much 

larger rotations per unit field than a silica fiber. This leads to a more sensitive current 

detection system. Fibers are still necessary to transport light to and from the basic 

sensor, and lenses and other optical elements are required to collimate and direct the light 

through the bulk glass. 

Sensor Sensitivity 

Faraday effect optical fiber current sensors do not always have an ideal response 

that is only dependent on the optical rotation. Singlemode fibers are a birefringent 

medium and controlling the exact state of polarization of the propagating light is difficult 

[47,48]. Stress introduced in the fiber during manufacturing or simply by winding it into 

a coil creates a linear birefringence, or retardance, that is coupled to the circular 

birefringence produced by the Faraday rotation. This effect can mask the rotation, 

resulting in loss of sensor sensitivity. Inherent stresses due to manufacturing can be 
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reduced significantly through careful processing [49]; however, bending stresses cannot 

be reduced quite so easily. Fortunately, the linear birefringence induced by bending is 

controllable and well defined [50]. For a fiber under zero tension, the bend-induced 

birefringence per unit length is given as 

where rf is the fiber radius, R is the bend or coil radius and K, is a parameter related to 

the stress-optic cocfficim and dependent upon the fiber material and the wavelength of 

light. For a silica fiber with h = 633 nm (HeNe laser light), K, = 7.7 x lo7 deg/m. 

In a linearly birefringent medium, the effects of Faraday rotation are best 

expressed as an operation on the complex field amplitudes, E, and E,,. Using the Jones 

Calculus, these amplitudes are described by [51] 

A = cos($z) - j T s i n ( 5 z )  AP , 

B = -sin($z) 2 F  , 
4’ 

and 
2 (c)’ = ($) + F2 . 

(2-8a) 

(2-8b) 

(2-8~)  

(2-8d) 

Here, AP is the total retardance per unit length and F is the total Faraday rotation per unit 

length. The field amplitudes are assumed to have a known state at z = 0, the entrance to 
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the fiber coil. The axes for linear birefringence are also assumed to remain constant 

throughout the fiber coil, with the fast axis in the plane of the fiber bend. From Eqs. 

(2-8), it is seen that if F >> AP, the operation on the field amplitudes is a pure rotation. 

Conversely, if AP >> F, B -+ 0 and a pure retardance results. Under the latter condition, 

the sensing of Faraday rotation can be quenched. 

The effects of linear birefringence in the fiber sensor coil can be reduced in 

several ways. Twisting of the optical fiber along its axis introduces a circular 

birefringence that acts to bias the sensor response to Faraday rotation [47,52]. The 

twisting rotation per unit length, R’, is given by 

R‘ = g’5f 7 (2-9) 

where kf is the number of twists per unit length and g’ is a material dependent parameter. 

At h = 633 nm, g’ x 0.08. The rotation induced by twisting adds algebraically to the 

field-induced Faraday rotation to produce the quantity, F, required for Eqs. (2-8). Since 

twisting has a nonsymmetric effect on bipolar signals, it is important that care be taken in 

sensor coil design. 

In general, most commercially available optical fibers can withstand a twist rate 

of 50 turns per meter [15]. This is more than adequate to offset the effects of linear 

birefringence in large diameter coils, but in fiber coils produced of many small turns, it is 

not sufficient. More rotation can be achieved through the use of circularly and 

elliptically birefringent optical fibers. A circularly birefringent fiber is manufactured 

with a helical core [23]; elliptically birefringent fibers are produced from high linearly 

birefringent fiber by spinning the preform during the fiber pulling process [24,53]. 

Current sensors constructed from these fibers have led to relatively high sensitivity 

measurements. 

The linear birefringence in small multiturn fiber coils can essentially be 
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eliminated through annealing [21, 22, 541. The fiber is wound in the desired geometry, 

heated to near the glass softening point and then returned slowly to room temperature. 

The annealed coil retains its predetermined configuration but has orders of magnitude 

less linear birefringence with only a slight increase in attenuation. Fiber sensors 

produced using this technique have resulted in the highest sensitivity measurements to 

date, noise equivalent currents of -100 pA/m for 188 turns of silica fiber in a coil 1 

cm in diameter [54]. 

Improved sensitivity is also possible through the use of higher Verdet constant 

optical materials. Many materials are available that have a much greater current 

measurement potcntial than do silica fibers (see Table 2-1). Attempts have been made to 

produce optical fibers from special glasses [25], such as FR-5, and from silica with high 

concentrations of ram earth dopants [26,27]. In general, the resulting fibers have 

contributed little to sensor applications because of large increases in  fiber attenuation, 

increased linear birefringence resulting from the manufacturing process or only minor 

improvements in Verdet constant for dopants in a stable glass matrix. Should production 

of quality higher Verdet constant fibers become prossible, one material in particular is of 

interest: SF-57 glass [45], with a Verdet constant 5.5 times that of silica and with a 

stress-optic coefficient (for reduced bend birefringence) about 100 times less. 

Bulk optic sensors have been fabricated from the diamagnetic materials SF-57 

glass and polycrystalline ZnSe [46]. These devices show increases in Faraday rotation 

that reflect their larger Verdet constants. Most bulk materials have been used for 

magnetic field sensors, but configurations for current sensors have been developed 

[45,46]. Temperature dependence of the Verdet constant and thermal expansion of the 

optical material set a limit on the measurement precision of the Faraday rotation. 

Diamagnetic materials are typically less temperature dependent than paramagnetic or 

ferromagnetic materials [35] which often makes them more desirable for sensor 

applications. A compensation mechanism for reducing the temperature dependence in 
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diamagnetic materials through use of input polarization control has also been developed 

1551. 

For greater Faraday sensitivity, the paramagnetic materials with even larger 

Verdet constants can be used. One in particular is the dilute magnetic semiconductor, 

Cd,-,Mn,Te, which offers sensitivities as great as three orders of magnitude above that of 

silica [10,39,56]. Additionally, a wavelength of operation can be selected for a given 

Manganese concentration that results in temperature independent Faraday rotation [57]. 

Because of its crystalline structure, however, this material has yet to be adapted to 

current sensor applications. Devices have primarily been confined to small volume 

magnetic field sensors [lo]. 

The largest Faraday rotations are produced in ferromagnetic (or ferrimagnetic) 

crystals [2,13,39]. The most notable ferromagnetics are the iron garnets (e.g., YIG, 

yttrium iron garnet). In these materials, an applied magnetic field aligns the magnetic 

dipoles of the individual domains. The specific rotation per unit applied field (equivalent 

to the Verdet constant in diamagnetic or paramagnetic materials) is the ratio of the 

saturation rotation, OFsat, to the saturation magnetic field, H,,,. This parameter is 

comparatively quite large, especially in the substituted iron garnets [12,58]. In 20% 

gallium substituted YIG (for the iron), Faraday sensitivity is reported to be 2.5 x lo4 

larger than in silica, which is approximately 20 times greater than in Cd,-,Mn,Te [ 121. 

High sensitivity magnetic field sensors have been constructed using YIG [13] and 

Ga:YIG [12], and small rods of Ga:YIG have been arranged around a conductor in a 

current sensor configuration [30]. By the nature of the ferromagnetic material, saturation 

magnetization can be a limiting factor [58]. However, for the measurement of small 

fields or currents, for which these materials would be targeted, this saturation limit 

should not interfere. 

Ultimately, the sensitivity limit for a Faraday effect current sensing system will 

Sources of noise are fluctuations in optical power be established by noise levels. 
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throughout the system and shot and thermal noise in the optical receiver. Laser noise 

sources and polarization variations due to temperature or stress vibrations can be large, 

but through careful component selection and system design, these fluctuations can be 

reduced significantly. The minimum measurable currents will then depend upon the 

receiver characteristics, in particular, the average optical detector output current, idet, and 

the amplifier feedback resistance, Rf. An expression for the noise equivalent current, 

NEI, given per unit root bandwidth [59],  is 

(2- 10) 

where k, is Boltmann's constant, T is the absolute temperature, e is the magnitude of the 

electron charge, and N is the number of turns in the fiber sensor coil. A plot of Eq. 

(2-10) for a single turn sensor coil with several values of the feedback resistor is shown 

in Fig. 2-5. For small values of the resistor, &, a slope of unity between NE1 and the 

average detector current is approached, indicating dominant Johnson or thermal noise. 

For large resistor values, shot noise dominates and the curve approaches a constant slope 

of ?h for all detector currents. It is expected that average detector output currents are not 

likely to exceed about 1 mA, resulting in system NEIs of -1 m A / m / t u r n  for the most 

sensitive fiber sensor systems 1451. Further improvements in system response can only 

be gained through more turns in the fiber coil or through the use of higher Verdet 

constant materials. 

Sensor Bandwidth 

The bandwidth of Faraday effect current sensors is limited by four basic factors: 

(1) the intrinsic response of the Faraday rotator material; (2) the response time of the 
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Fig. 2-5. The noise equivalent current per root unit bandwidth for a single turn fiber 
current sensor plotted as a function of the average detector output current. The effect of 
varying the feedback resistance in the transimpedance detection amplifier is shown. 

photodiode and the bandwidth of the amplifier used in the receiver circuit; (3) the 

dispersion of the propagating light while passing through the sensing and transmitting 

medium; and (4) the transit time of the light propagating through the sensor material. 

For most sensor systems, items (2) and (3) are of little concern. Photodiodes with a few 

tens of picoseconds of response time are available as are amplifiers with greater than 10 

GHz bandwidths. And since relatively short lengths of singlemode fibers and high 

quality glasses or crystals are used in sensor systems along with laser sources, dispersion 

effects should not begin limiting bandwidths until tens of gigahertz. 

The intrinsic response in Faraday rotator materials is determined by the relaxation 

or spin reorientation time of the interacting magnetic ions or domains. Each class of 

materials - diamagnetic, paramagnetic and ferromagnetic - can have a different 

microscopic interaction mechanism for the Faraday effect, resulting in effective Verdet 
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constants that are widely distributed in frequency response. In some paramagnetic 

glasses and crystals the frequency dependent Faraday rotation, @,(a), is described by a 

simple Debye relaxation function [37] 

(2- 1 1) 

where O,(O) is the zero frequency response of the material, o = 2nf is the angular 

modulation frequency of the magnetic field, and zR is the material relaxation time 

constant. This modcl has been compared to measurements made on Cd,-,Mn,Te sensors 

[38]. The frequency dependcnt Faraday rotation (effective Verdet constant) for the 

Cd,-,Mn,Te system is shown in Fig. 2-6 for two different compositions. Different laser 

wavelengths were required for maximum Faraday response since the bandgap changes 

with composition. When the Manganese concentration is increased from 10% to 45%, 

the relaxation time decreases, resulting in nearly an order of magnitude increase in the 

frequency response. 

In ferromagnetic materials, the frequency dependence of the Faraday effect is also 

highly dependent on composition [30,31]. Typically, the larger the enhancement of the 

localized magnetic field, the slower the movement of the domain walls. In Fig. 2-7, the 

frequency response is plotted for samples of pure YIG [ 131 and Ga:YIG [30]. The YIG 

sample has a -3 dB frequency of approximately 700 MHz, while the Ga:YIG sample has 

a bandwidth of - 7.5 MHz. These frequency responses scale inversely (though not 

linearly) with the increases in their relative Faraday sensitivities; the Ga:YIG has a 

significantly larger rotation per unit field. 

In diamagnetic and paramagnetic glasses, the magnetic ion relaxation times are 

usually less than one picosecond [37]. Thus, in fiber current sensor systems where the 

singlemode fiber has been drawn from common glasses or glasses doped with magnetic 
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Fig. 2-6. Relative changes in the Faraday rotation versus frequency for two Manganese 
concentrations in Cd,-,Mn,Te [38]. Each set of data was taken using a laser wavelength 
optimized for material response with that Mn concentration. Solid and dashed lines 
represent theoretical fits to the frequency dependence. 
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Fig. 2-7. The frequency response of the Faraday rotation for two compositions of YIG 
crystals. (Top) A 5 mm diameter by 3 mm long sample of pure YIG [13]. (Bottom) A 
1.5 mm diameter by 5 mm long sample of Ga:YIG [30]. 
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ions, it is safe to assume that intrinsic material frequency response will not be the 

limiting factor in system bandwidth. In most practical applications, the bandwidth will 

be constrained by the light transit time through the sensing material. This is particularly 

true for fiber sensors in which many turns have been used in a coil for increasing 

measurement sensitivity. In order for the rotation to be described by Eq. (2-3), the 

amplitude variations in the conducted current (or the associated magnetic field) must be 

small during the time it takes for the light to propagate from one end of the fiber coil to 

the other. Otherwise, changes in the field become convolved with the propagating light 

rotations. The dependence of fiber current sensor frequency response on the light transit 

time and the subsequent limitations on bandwidth are the subject of this study. 

Theoretical and experimental descriptions of the frequency dependent Faraday rotation 

for many current sensor configurations appear throughout the remainder of this 

document. 
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CHAPTER 3 

TRANSIT TIME FREQUENCY RESPONSE THEORY 

In order to derive an expression for the frequency dependent Faraday rotation, 

three assumptions are made about the optical fiber current measurement system: (1) the 

circular birefringence produced by the Faraday effect dominates the polarization state in 

the fiber; (2) the magnetic field propagating along with the current on the conductor is 

planar and azimuthally symmetric - in general, a transverse electromagnetic (TEM) 

wave; and (3) the current flowing along the conductor is treated as an infinitely long 

filament of moving charge centered at the conductor's longitudinal axis. The first 

assumption implies that any significant linear birefringence in the fiber has been removed 

through annealing or twisting so that uncharacteristic polarization shifts in the fiber are 

not convolved with the remaining electromagnetic interactions. And the last two 

assumptions assure that all points along the fiber that fall in a plane perpendicular to the 

conductor experience simultaneous exposure to the passing magnetic wave. 

The magnetic flux density from the passing TEM wave has a spatial and temporal 

dependence given by 

$ 9  

If i ,-j(wt - k.1) B(r,t) = - 
2n r (3-1) 

where r is the radial distance from the conductor to the light element propagating in the 

fiber, o = 2nf is the angular modulation frequency of the field, k is the propagation 

vector of the TEM wave pointing in a direction parallel to the conductor, 1 is the length 

vector for the fiber coil, and 6 is the unit vector in the azimuthal direction. In Eq. (3-1) 

the current, i, is taken to be static, or slowly varying with respect to w. The fiber coil and 

its position relative to the conductor is allowed to be in many configurations. In general, 
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the coil will not have a circular cross section, the conductor will not be centered in the 

coil cross section, and the coil turns will not be collocated (allowed to form a helix). 

Thus, B and dl in Eq. (2-1) will not be codirectional as is the case for a circular coil with 

a centered conductor, and the vectors k and I in Eq. (3-1) will not be orthogonal as with a 

coil with collocated turns. 

The angles formed between the field vectors and the light elements in the fiber 

are illustrated in Fig. 3-1. B and dl subtend an angle y and k and dl subtend an angle w, 
so that 

B dl = Bcosysinydl , (3-2) 

and 

k.1 = klcosv . (3-3) 

Substituting the infoimation from Eqs. (3-1) through (3-3) into Eq. (2-1) results in an 

expression for the frequency dependent 

L 

Faraday rotation: 

-j(o t - kl cosv) 
cosysiny e dl . (3-4) 

The wave propagation constant can be expressed as k = w'vph, where vph is the 

wave phase velocity (usually the speed of light in the medium surrounding the 

conductor). The surrounding medium totally immerses the fiber and may be a material 

other than air or vacuum. In general, the medium will have permittivity of E and 

permeability of p. Then the phase velocity is given by 
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Fig. 3-1. Angles formed between the light propagating in the fiber coil and the magnetic 
field associated with the conducted current. 
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1 
VPh = - (3-5) 

Since E = E, E, and p = p, p,, where E, and p, are the free space permittivity and 

permeability, and E, and p, are the material relative permittivity and permeability, the 

phase velocity can be rewritten as 

with c being the speed of light in a vacuum. 

As the light in the fiber propagates through the coil, r, y and w in Eq. (3-4) can 

vary, making them time, or position, dependent parameters. Equation (3-4) is changed 

from a length integral to a time integral, using the relationship 1 = (c/n)t, where n is the 

fiber refractive index. The expression for k, incorporating Eq. (3-6), and the time 

dependencies of all parameters are substituted into Eq. (3-4) to give 

J 
0 

where z = (n/c)L is the transit time of the light through the fiber. In Eq. (3-7), the low 

frequency Faraday rotation, 0, , has been introduced through substitution of Eq. (2-3). 

The frequency dependent Faraday rotation as expressed by Eq. (3-7) is then a function of 

the position of the current-carrying conductor relative to the fiber coil, the coil shape 

(cross section and helical parameters), and the relative phase between the magnetic field 

and the light propagating in the fiber. 

For a given current measurement system, Eq. (3-7) can be solved to predict the 
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Faraday rotation frequency response. Solutions for particular system geometries are 

presented in the following chapters of this document. Two simplifications of Eq. (3-7) 

are of greatest interest in providing the starting foundation for those developments. First 

is the case where the fiber coil turns are collocated and the plane of the coil is 

perpendicular to the conductor. In this configuration all points along the fiber coil are 

simultaneously exposed to the passing magnetic field. With w = 90°, the expression for 

the frequency dependent Faraday rotation becomes [ 141 

Sensor coils having this planar geometry are discussed in detail in Chapters 4 through 7. 

The second case fixes the conductor at the center of a circular cross section coil, 

but allows the coil turns to be spread apart. This configuration represents a travelling 

wave geometry that increases the phase matching between the propagating light in the 

fiber and the passing electromagnetic wave [60]. With the conductor centered, r = R 

(fixed radius of the circular coil), and y = 0. Then Eq. (3-7) reduces to 

Travelling wave fiber current sensors are presented in Chapters 8 through 11. 

Throughout this paper, particular interest is generated from the magnitude of the 

Faraday response relative to its low frequency value, IO(o)/O,,). The frequency 

dependent response can be calculated using either Eq. (3-8) or Eq. (3-9), or directly from 

Eq. (3-7) if more complex configurations wish to be explored. At frequencies near zero 
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(static or d.c. conditions), the relative magnitude is always unity. At the higher 

frequencies, this magnitude will rolloff, but in general, it can have values anywhere 

between zero and one at any given frequency. A frequency, mu, is defined at the point 

where the relative magnitude is fust reduced from its static value to 

(3-10) 

This frequency provides the 3 dB bandwidth, AB, for the current measurement system 

under investigation. The bandwidth is a useful parameter for comparing the response and 

performance of systems that use different types of optical fiber coils. In general, the 

bandwidths are strong functions of the transit time, 2. A second parameter of interest is 

the cutoff frequency, o,, = 2nf,,, which is defined as that frequency where the Faraday 

response first equals zero. Multiple nulls and high frequency lobes of the Faraday 

rotation response occur for many of the fiber systems studied here. 

The assumption that a TEM wave surrounds the current carrier is useful in 

simplifying the theoretical development needed to model fiber current measurement 

systems and providing a framework within which an experimental verification is 

possible. A single wire conductor produces non-TEM fields consisting of many modes 

and exhibiting strong spatial distributions [61]. Wave impedances vary with frequency, 

and a simple relationship between currents and fields may not be possible to determine. 

This obviously would introduce additional complexity into the Faraday response 

computations of Eqs. (3-7) through (3-9). A coaxial transmission line, however, 

produces a magnetic flux density given by Eq. (3-1) and satisfies the TEM condition. 

The fiber current sensor models developed in this study do not attempt to treat the 

additional high frequency effects produced by the single wire conductor; that is left for 

future study. 
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CHAPTER 4 

EXPERIMENTAL APPARATUS AND PROCEDURES 

I S U P P L Y  BATTERY - D E T E C T O R  AMPS 
P H O T O -  

. 

The instrumentation used in the high frequency measurements of fiber current 

sensor coils is shown in the schematic of Fig. 4-1. Linearly polarized light from a laser 

source passes through beam expansion optics and a half-wave retarder, then is injected 

into a singlemode fiber lead using a lox microscope objective. Light in the fiber lead is 

S P E C T R U M  
A N A L Y Z E R  

x - Y - z  

T t l o x  POS. 11 12 
L A S E R  
S O U R C E  U - 

8 EAM 
O P T I C S  

'SM F I B E R  

x - Y - z  

P O S .  

Fig. 4-1. Arrangement used for measuring the frequency response of the Faraday effect 
in optical fiber current sensor coils. L1 and L2 are lenses used for beam expansion and 
collimation, h/2 is a double Fresnel rhomb half-wave plate, and the components marked 
by 1OX and 20X are microscope objectives used for light injection into the optical fibers 
and collimation of light exiting from the fibers. 
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carried to the sensor coil located inside a special coaxial test cell. The light undergoes a 

rotation (induced by the conducted current), is transported out of the cell via the output 

fiber coil lead, and then exits the fiber. The polarization is analyzed, and the resultant 

optical signal is reinjected into a multimode fiber leading to a high speed photodiode. 

Signals are amplified and their magnitudes are displayed on a spectrum analyzer. Three 

different laser sources were used during experimentation: a He-Ne laser (633 nm, 8 mW) 

and two GaAlAs diode lasers (780 nm, 3 mW and 840 nm, 30 mW). Figure 4-2 is a 

bench-top photograph of the optical components used in the experimental arrangement. 

Single frequency RF signals were generated by an oscillator or synthesized signal 

generator and then amplified to a maximum of 10 Watts before injection into the coaxial 

test cell. The power transmitted through the test cell was attenuated (usually 30 dB) and 

monitored by a power meter. All the RF instrumentation in the drive line operates into a 

50 R impedance, thus producing a maximum rms test current of approximately 0.45 A. 

. . . . . . .  

. . . . . . .  . . . . . . . .  
. . . . . . .  . * . . - .  

. . . . . . .  . . . . . . .  . . . . . . .  
r ,  . . . . . . . . . . .  . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  

Fig. 4-2. 

measurement of fiber current sensor response. 
A photograph of the optical components on the bench top used in the 
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The general frequency range covered during experimentation was 500 kHz to 1 GHz. 

The photograph in Fig. 4-3 shows the RF instrumentation used: signal generators, high- 

power amplifiers, power meter, photodetectors and spectrum analyzers. 

Fig. 4-3. 
response of fiber current sensor coils. 

The RF drive and measurement instrumentation used in characterizing the 
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One of three high speed photodiodes was used at the front end of the 

photodetection system. These include a silicon PIN photodiode, a silicon avalanche 

photodiode (APD) and a GaAlAs photodiode. Each has a response bandwidth in excess 

of 1 GHz. The diodes along with bias circuitry and small-signal RF amplifiers were 

housed in shielded enclosures to reduce interference from the high power RF drive 

sources. 

In Fig. 4-4, the schematic of the silicon PIN photodetection system is shown. The 

system includes 42 dB of amplification and a dc bias port for monitoring light intensities 

during setup and alignment. A 1.2 AH rechargeable battery pack served as the +15 Vdc 

supply. In 

generating this response curve, an Ortel high speed GaAlAs semiconductor laser drove 

the input to the silicon PIN photodiode. Detector response does not deviate greater than+ 

2 dB for frequencies below - 1.1 GHz; however, the oscillations above 500 MHz are 

The frequency response of this photodetector is plotted in Fig. 4-5. 

+15 Vdc 

DC Bias 
output 

RF 
output 

50/125 
MM fiber 

Shielded 
Enclosure 

Fig. 4-4. Silicon PIN photodetection system built into a shielded enclosure. 

34 



log MAG =2 1 
’ REF 1.0 dB 

1.0 dB/ 
2.3527 dB 

START 0.045000000 GHt 
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Fig. 4-5. The frequency response of the silicon PIN photodiode with 42 dB of serial, 
small-signal RF amplification. 

large enough to warrant corrections in the measured current sensor data. The large 

response increase near 1 GHz is caused by resonant amplification between the 

photodiode circuit and the first RF amplifier. This anomaly does not occur in all the 

photodetector systems. 

The coaxial test cells are expanded transmission line chambers that provide near 

ideal electromagnetic environments that impinge on the fiber coils [34]. Discussions of 

pertinent coaxial line properties and the characteristics of fabricated airlines are given in 

Appendix A. A cross sectional view of one of the test cells is presented in Fig. 4-6, and a 
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Fig. 4-6. A cross sectional view of an expanded coaxial airline test cell with an optical 
fiber coil mounted in the working volume. 

close-up photograph of the cell is shown in Fig. 4-7a. The cells are designed to open 

easily for mounting of the optical fiber coils in the cell working volume. The position of 

the coil inside the cell is seen in Fig. 4-7b. A transverse electromagnetic (TEM) wave is 

launched in the air space in the cell, and travels with a phase velocity equal to the speed 

of light. Cell impedance is designed for 50 Q, requiring the outer to inner conductor 

diameter ratio to be 2.3. The conductor diameters also dictate the highest frequency to 

which TEM mode operation can be sustained. Three cells with higher-order mode cutoff 

frequencies of 1.0, 2.3 and 13.7 GHz were used in these measurements; selection among 

these devices was dependent on the fiber sensor coil size. 

All the cells were characterized with the fiber coils and any additional support 

structures mounted inside. Measurements of the standing wave ratios (SWR) and 

impedances of the cells indicate that electromagnetic properties varied minimally from 

the design. The 1-GHz airline test cell was used most frequently during experimentation; 
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Fig. 4-7. Photographs of the 1-GHz expanded coaxial test cell. (a) The fully assembled 
cell, and (b) the opened cell showing a fiber coil mounted around the center conductor. 
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its SWR and impedance magnitude are plotted in Fig. 4-8. Below 1 GHz, the maximum 

cell SWR is approximately 1.21, and the impedance varies no more than 7 SZ from its 

5 0 R  nominal value (0.7 dB maximum deviation). These excellent cell impedances 

allow for the simple relationship between power and current, P = i2 Z, to be utilized. 

Thus, only power monitoring was needed during coil testing to determine the relative 

magnitude of the sensed currents. The maximum error in estimating the currents was 

always less than 0.7 dB, and corrections for impedance deviations at individual 

frequencies could be applied where greater precision was required. 

The coaxial transmission cells were also configured in non-airline modes with 

liquid dielectrics. These configurations are used in conjunction with travelling wave 

current sensor concepts and are discussed in detail in Chapter 9. 

Optical fiber coils were constructed from low birefringence singlemode fiber with 

an 80 pm cladding diameter. In order to overcome the effects of bend-induced linear 

birefringence [50], fiber twisting [52] or fiber annealing [21] was employed during coil 

fabrication. For most of the sensors, a twisted and rejacketed fiber was used [29]. This 

fiber has an outer buffer diameter of 1 mm and can have twist rates as large as 40 

turndmeter. With this fiber, coil construction is greatly simplified. Fiber coils were 

mounted approximately in the center of the test volume of the expanded coaxial test cells 

as illustrated in Figs. 4-6 and 4-7b. Some of the circular cross section coils were wound 

directly on the cell center conductor or were wound in a self-supporting form using the 

twisted and rejacketed fiber. Other circular coils were supported using machined 

polyurethane foam (10 lb/ft3) or a polycarbonate. Fibers entered and exited the cell 

volume through the outer conductive wall (see Fig. 4-7a). 

Using the half-wave retarder, the linear polarization angle of the light injected 

into the singlemode fiber was aligned with one of the fiber coil linear birefringence axes. 

Orientation of the axes (in all but the annealed fiber coils) are established by bend 

birefringence and twist-induced circular birefringence. The output polarizer/analyzer 
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Frequency (MHz) 

Fig. 4-8. The SWR (a) and the impedance magnitude (b) for the 1-GHz coaxial test cell 
with an optical fiber coil inside. 
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was set at 45" to the exiting linear polarization state. The detected intensity versus 

rotation then follows the response shown in the bottom of Fig. 2-2 and is described by 

where @(a) is the frequency dependent Faraday rotation introduced in Chapter 3. The 

linear dependence of @(a) on the current, i, is established by Eq. (3-4). Maximum 

sensitivity to the Faraday rotation is achieved since the slope of the response curve in 

Eq. (4-1) is largest at zero current. The choice of sign in Eq. (4-1) depends on whether a 

+ 45" or - 45" analyzer setting is used. For the RF currents used in testing, the bipolar 

signals oscillate about zero and the magnitude of the ac component is all that is recorded. 

Then in the absence of any linear birefringence in the coil fibers, the sign of the response 

slope near zero in Eq. (4-1) is not important, and the system output polarizers can be set 

at either + 45" or - 45". In the present measurements, maximum rotations were 

approximately 200 p a d  (rms) making the argument of Eq. (4-1) very small. Under these 

conditions, the change in the measured light intensity is directly proportional to changes 

in the induced Faraday rotation, AI oc A@. Subsequently, the intensity variations follow 

the signal drive current, AI oc Ai. 

Spectrum analysis was used to determine the Faraday rotation in the fiber sensor 

coils through frequency domain measurements of response magnitudes. No attempts 

were made at measuring phase shifts in the sensor systems or monitoring the time 

domain response. Instrument sensitivities make such measurements far more difficult 

than the magnitude determination. Relative response magnitudes were generated for 

each of the current sensor coils of interest by establishing a low frequency reference. For 

all of the systems studied, this reference magnitude was recorded at 1 MHz or below. At 

discrete higher frequencies magnitude changes were measured. A plot of the relative 
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frequency response was produced directly from these results. Care was taken during all 

measurements to keep the RF power transmitted through the cell and the dc laser light 

level constant. Any significant deviations in these parameters were corrected in the 

measured magnitudes. 

The small Faraday rotation angles produced in the silica optical fibers required 

measuring signals with magnitudes less than -70 dBm. Photodetection was usually 

limited by thermal noise at a level near -120 dBm for a 10 Hz spectrum analyzer 

bandwidth. When using the GaAlAs semiconductor diode laser sources, carrier noise 

often dominated the system; levels were typically 10 to 20 dB greater than detector 

thermal noise. Signal-to-noise ratios ( S / N )  at the lowest frequencies (- 1 MHz) were 

always greater than 30 dB, regardless of the source used, and occasionally exceeded 40 

dB for some of the fiber sensor systems. At the higher frequencies the S/N dropped as 

the response diminished. Consequently, significant RF shielding was required to 

preserve signal integrity at these higher frequencies. Isolation between the RF drive 

amplifier output (up to + 40 dBm) and the spectrum analyzer input (noise levels at less 

than -1 10 dBm) needed to be greater than 150 dB up to 1 GHz. Shielding was provided 

at all component stages: semirigid coaxial cable for all electrical interconnects; the closed 

coaxial test cell; multimode fiber isolation of the detected optical intensity; complete 

shielded enclosures with coaxial feedthroughs for the photodetection system; and 

shielded, battery-operated sources for supply voltages. RF interference occasionally 

degraded system performance at the highest frequencies, but did not prohibit the 

characterization of any current sensor coil response. 
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CHAPTER 5 

CENTERED AND CIRCULAR FIBER SENSOR COILS 

The most c o m o n  configuration for a Faraday effect fiber current sensor is a 

planar, circularly shaped coil with the current-carrying conductor centered in the coil 

cross section. This geometry is considered baseline for most sensor systems, and 

experimenters often strive to assemble fiber coils in this configuration if for no other 

reason than the resultant symmetry. Because of the high degree of symmetry, the 

mathematical developments needed to describe the high frequency response of the 

Faraday rotation are greatly simplified. Much of the related theory for the circular, 

centered coil is presented in Ref. 33; it is repeated here to provide a foundation for the 

circular coils and establish comparative relationships for later model developments. 

Centered Coil Model 

In addition to earlier assumptions given in Chapter 3, it is now assumed that all 

fiber turns are circular in cross section, collocated in space and concentric with the 

conductor axis. Then if the fields associated with the current are planar, all points on the 

fiber coil are simultaneously exposed to the same magnetic flux density. Variations in 

field modulation with time are all that create a frequency dependence in the induced 

Faraday rotation. In Eq. (3-8), r is a constant value R, which is the fiber coil radius, and 

y is zero at all times since the magnetic field vector direction always coincides with the 

direction of light propagation in the fiber. Equation (3-8) then reduces to the simple 

form: 
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where T = (n/c)L = 2nRN(n/c). The solution to Eq. (5-1) is 

which further simplifies to 

Equation (5-3) is a familiar relationship, describing the response of many systems 

involving the convolution of two propagating electromagnetic signals [62]. The 

magnitude of the Faraday response relative to its low frequency value is 

and the phase, $, is given by 

O T  
(5-5)  0 = arg[O(o)] = -- * 

2 

Plots of the magnitude and phase described by Eqs. (5-4) and (5-5) are shown in Fig. 5-1 

as a function of the normalized frequency, 0d2. Presentation of theoretical responses 

versus normalized frequency removes the dependence on coil size. This practice is 

commonly used throughout this document. 

In the most generalized case, Eq. (5-3) also includes a phase factor, e-Jwb, which 

accounts for an arbitrary starting point of the light in the fiber coil relative to the zero 
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Fig. 5-1. The relative magnitude (solid curve) and phase (dashed curve) of the fre- 
quency dependent Faraday rotation for an optical fiber current sensor system with a 
centered, circular coil. 

phase point of the oscillating magnetic field. The time delay, 6, can be introduced into 

Eq. (5-1) by modifying the integration limits, 6 to 'I: + b, or by changing the integrand to 

e-Ja(t + to). Using either approach, the resulting phase delay is the same and has no affect 

on the Faraday rotation magnitude, Eq. (5-4). The response phase becomes t$ = 

- (012) (z + to), but its frequency dependence is not altered from that in Eq. (5-5). 

Consequently, the arbitrary phase delay has no significant affect on Faraday response for 

the centered, circular coils, and b is set to zero without any loss of generality. 

By combining Eqs. (3-10) and (5-4), the 3 dB bandwidth, AB, occurs when 
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from which 0,2/2 = 1.392 and 

0.696 c 
n 2 R n N  * 

A l 3 =  (5-7) 

An estimate of the sensor bandwidth was made in Ref. 33 by noting that 0,2/2 = f i  
from Eq. (5-6). Thus 

C A B =  
& n 2 R n N  ' 

(5-8)  

The difference in the bandwidths computed using Eqs. (5-7) and (5-8) is only 1.6%. The 

current sensor high frequency cutoff (first response null) occurs at 

C - 1 - - -  '"-- z 2 x R n N  * 
(5-9) 

Additional response function nulls occur at integer multiples of f,,. 

A sensitivity-bandwidth product was introduced in Ref. 33 and has been used by 

other researchers [30] to compare the high frequency measurement performance of 

current sensing systems, both optical fiber and bulk optic. The sensitivity-bandwidth 

product is formed by combining Eqs. (2-3) and (5-8): 

(5-10) 
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Equation (5-10) indicates that fiber current sensor bandwidth can be increased without a 

loss in  sensitivity by reducing the coil radius. At small radii, however, the effects of 

bend-induced linear birefringence begin to quench the Faraday sensitivity [50]. Under 

such conditions, the SBP is a more complex relationship involving R. In fact, the 

response function for fiber coils that exhibit significant linear birefringence will contain 

other frequency dependent factors in addition to those described by Eq. (5-3). During 

experimentation with one tightly wound coil, this anomalous behavior was observed. It 

was quickly dismissed as being caused by linear birefringence; no mathematical 

description of this perturbed frequency response was attempted. 

As mentioned previously, the effects of linear birefringence can be overcome in 

the fiber sensor by twisting the optical fiber [52] before forming it into a coil. This 

procedure creates a circular birefringence bias that leads to acceptable sensor response. 

Practical mechanical limitations on fiber twisting, however, are approximately 50 

twistdm, which constrains coil radii to greater than 1.5 cm for current sensor operation in 

the red or near infrared portions of the spectrum. Smaller coil radii are possible by using 

fiber annealing to remove bend-induced birefringence and the intrinsic stresses due to 

manufacturing [21]. Coils of 10 to 20 turns with 2.5 mm radii [63] and 100 to 200 turns 

with 5 mm radii [54] have been manufactured. With fiber sensors having these small 

radii, significant improvements in the sensitivity-bandwidth product are possible. Thus, 

high frequency measurements on an annealed coil sensor are included in this study to 

demonstrate these improvements. 

Measured ResDonse Functions 

High frequency responses were measured on several optical fiber current sensor 

coils to demonstrate the utility of Faraday effect sensors at extremely high frequencies 

and to verify the theoretical predictions. Fiber test coils were fabricated in several con- 

figurations; these are summarized in Table 5-1. Mean coil diameters ranged from 
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Table 5-1. 

- 

Coil 

# 

- 

1 

2 

3 

4 

5 

6 

7 

8 

- 

M W  

Coil 

Diameter 

(cm) 

10.7 

9.5 

6.0 

6.0 

8.95 

0.64 

9.6 

2.95 

Summary of High Frequency Response Measurements 
on Centered, Circular Optical Fiber Current Sensor Coils. 

Number 

of 

Turns 

100 

42 

20 

10 

15 

20 

10 

21 

Fiber/ 

Coil 

Construction 

Twisted, 15/m 

Rejacketed 

Twisted, 10/m 

Twisted, 40/m 

Rejacketed 

Twisted, 401m 

Rejacketed 

Twisted, 40/m 

Rejacketed 

Annealed 

Twisted, 40/m 

Rejacketed 

Twisted, 20/m 

3 dB 

Bandwidth, 

AB (MHz) 

Measured 
~ 

2.7 

7.1 

24.5 

45.4 

20.7 

229.1 

29.5 

46.7 

Theory 

2.7 

7.3 

24.2 

48.3 

21.6 

226.4 

30.2 

46.8 

cutoff 

Frequency, 

fco (MHz) 

bkasured 
~~ 

6.1 

16.1 

55.4 

102.5 

46.8 

517.1 

66.7 

105.4 

Theory 

6.1 

16.4 

54.5 

109.0 

48.7 

511.0 

68.1 

105.6 

Highest 

Measurement 

Frequency 

( M W  

15 

I 50 

110 

215 

100 

lo00 

800 

215 
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approximately 6.4 mm to 10.7 cm and the number of coil turns varied between 10 and 

100. The smallest coil, #6, was annealed during fabrication while all the other coils used 

twisted fiber. 

(The annealed coil was prepared by the Optical Electronic Metrology Group at 

the National Institute of Standards and Technology (NIST). NIST personnel also 

contributed significantly to the fabrication and characterization of the coaxial 

transmission cell used to hold the coil and the experimental measurement of the sensor 

response . ) 
A summary of the high frequency response parameters for each of the different 

sensors is also presented in Table 5-1. Both measured and theoretically predicted values 

are given for bandwidth and cutoff frequency. Equations (5-7) and (5-9) were used for 

the predictions. The 3 dB bandwidths for the coils in Table 5-1 ranged from 2.7 to 229 

MHz. High frequency measurements were made on all coils to well beyond fco; the 

largest test frequency was 1 GHz. For some of the configurations several high frequency 

lobes of the response magnitude (greater than two) were investigated. All of the 

measured response curves followed the functional form of the magnitude predicted by 

Eq. (5-4) and plotted in Fig. 5-1. 

The frequency response of coil #4 listed in Table 5-1 is shown in Fig. 5-2. The 

dashed curve is generated from Eq. (5-4) using the estimated parameters for the fiber 

(n = 1.46 at h = 633 nm) and coil only. Although the curve shape is generally correct, it 

represents a poor fit to the experimental values. Discrepancies are due somewhat to the 

uncertainty in determining coil geometry and the optical fiber refractive index but mostly 

to neglect of the fiber coil leads in the response computation. When the coil was inserted 

into the coaxial test cell, the input and output fiber leads were arranged so that each lead 

exited the coil in opposite directions. This effectively adds an extra half turn to the value 

of N. (This configuration is not a requirement for current sensor coils and some of the 

tested coils did have a different lead configuration.) The added fiber length then 
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contributes to a reduced bandwidth since the passing magnetic wave also produces a 

Faraday rotation in the leads. 

An extended model that addresses fiber lead effects is presented in Appendix B. 

An exact mathematical description is derived for the Faraday rotation in two possible 

lead configurations: fiber entering and exiting from the same side, and the configuration 

used for coil #4, leads exiting in opposite directions. When the lead effects are 

accounted for in the response of the coil, the solid curve in Fig. 5-2 is produced. This 

predicted response agrees well with the measured data points, especially at the nulls in 

the curve. Not surprising is the fact that the solid curve in Fig. 5-2 can be duplicated 

almost precisely by using N = 10.5 as a coil parameter in the magnitude prediction from 

0” 0.6- 
\ 
n 
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u 

I 
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R = 3 c m  I 

I 

I (daah) theory/coil only 
(solid) theory/coil+leade 
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Frequency (MHz) 

Fig. 5-2. Measured and theoretical Faraday rotation relative response magnitudes versus 
frequency for a 10 turn, 6 cm diameter current sensor coil. 
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Eq. (5-4). 

Figure 5-3 is a plot of the relative magnitude of the high frequency Faraday 

response for the annealed fiber coil sensor (coil #6 in Table 5-1). The Sensor bandwidth 

is estimated to be 229 MHz and the cutoff frequency 517 MHz. The dashed curve in Fig. 

5-3 is a best fit to the measured values using the function given by Eq. (5-4) and varying 

the argument, 02 /2  = 2n2fRN(n/c). This fitted curve is quite accurate and thus can be 

used to enhance the evaluation of the sensor response. Since relative measurement errors 

are typically f l  dB, exact determination of response parameters is difficult using only the 

measured values. For example, the 3 dB bandwidth is extracted from the experimental 
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data by first performing a functional curve fit, taking care to properly match the response 

nulls since absolute measurement error is small in these frequency regions, and then 

interpolating the frequency at a relative magnitude of 0.707. All of the measured 

bandwidths for sensors presented in Table 5-1 were determined using this procedure. 

Fits to the experimental response data are also useful in estimating other fiber and 

coil parameters. The dashed curve in Fig. 5-3 was used to estimate the mean diameter of 

the annealed fiber sensor coil. In manufacturing the coil, an annealing fixture with a coil 

channel 5 mm to 8 mm in diameter is used to confine the fiber. The resulting coil has 

turns of slightly varying diameter. From the results presented in Fig. 5-3, a light transit 

time is estimated for the entire coil which then corresponds to a mean coil diameter of 

approximately 6.4 mm. 

The annealed fiber coil represents a frst attempt at producing a current sensor 

with a very wide bandwidth. Its testing is also a first attempt at characterizing the 

response of a fiber current sensor into the microwave region (> 500 MHz). The 

estimated 3 dB bandwidth of 229 MHz is almost a factor of five greater than that for any 

of the other coils characterized in this study. Since the measured Faraday rotations were 

approximately of the same magnitude for the annealed coil as for all the other test coils, 

there appears to be no degradation in sensor performance due to fiber annealing. Hence, 

the annealing process only serves to enhance the capabilities for high frequency current 

sensing by extending the sensitivity-bandwidth product. The estimated SBP for this 

sensor is 1.34 x lo4 Hz-rad/A or 0.77 MHz-O/A. 

The signal and noise spectrum of the annealed fiber current measurement test 

system is shown in Fig. 5-4. Maximum signals at the low frequencies correspond to 

measured rms rotations of approximately 41.4 prad. Diode-laser carrier noise (closed 

circles in Fig. 5-4) 

about 10 dB as the 

3 dB bandwidth, a 

is the limiting factor in sensor performance; it increases in magnitude 

frequency increases from its lower values to 1 GHz. 

S/N = 32 dB is maintained for a spectrum analyzer 

Over the sensor 

bandwidth of 10 
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Fig. 5-4. 

fiber current sensing system. 
The measured signal and noise responses versus frequency for the annealed 

Hz. Based on experimental parameters and measured noise characteristics, the projected 

noise equivalent rms current (NEI) sensitivity for this annealed coil sensor is 

3.6 m A / a ,  or if the number of fiber turns in the coil is removed, 71.5 m A / m /  turn. 

Over the full sensor 3 dB bandwidth, the minimum detectable rms current would then be 

54 A. 

As a comparison, the published NE1 sensitivity for a 1 cm diameter, 188 turn 

annealed-coil sensor system is - 100 PA /a or 18.8 mA /m/ turn [54]. This noise 

figure is a factor of four better than that determined for the wideband annealed coil 

system studied here. However, the 3 dB bandwidth for the sensor in Ref. 54 is only 15.5 

MHz, almost a factor of 15 smaller. The differences in NE1 performance can be rectified 
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by comparing the detection systems used in each study. In Ref. 54, the sensor sensitivity 

is based on a shot-noise-limited detection of two, complimentary polarization-state 

signals (see Eq. (2-10) and Fig. 2-5). Wideband sensing systems as used in the present 

measurements require 50 R or low impedance circuitry to be compatible with FW 

instrumentation. Thus, detector noise levels are dominated by thermal properties and not 

shot noise. Thermal noise levels in these systems will typically be 10 dB or greater than 

detector shot noise. The detector thermal noise measurements for the annealed coil used 

here are given in Fig. 5-4 as the closed triangles. If this system was limited by thermal 

noise instead of laser carrier noise (which is frequency dependent), the NE1 sensitivity 

would rival that of the systems presented in Ref. 54. In fact, the dual detector system 

used in Ref. 54 allows for removal of laser noise common in the two channels. 

In most of the measurements on the sensor systems summarized in Table 5-1, a 

He-Ne laser was used as the source. Performances were then limited by detector thermal 

noise and not laser carrier noise as seen in Fig. 5-4. This leads to larger signal-to-noise 

ratios and smaller broadband NEIs. The largest measured S / N  values were for coil #8. 

Over its 3 dB bandwidth of 46.7 MHz, S / N  is greater than 40 dB, and the system rms 

NE1 is 1.4 mA /& or 30 mA /&/ turn. This sensor has a relatively narrow 

bandwidth compared to that of the annealed coil sensor used in this study, and thus the 

minimum detectable rms current at full bandwidth is significantly smaller, 3.1 A. It is 

obvious that complex tradeoffs exist between sensitivity and bandwidth in these high 

frequency systems. An estimated theoretical limit for the ultimate noise performance in a 

fiber current sensor system utilizing the dual shot-noise-limited detectors was briefly 

presented in Chapter 2 and is given as 1 mA /&/ turn [45,59]. It must be remembered 

that this estimate is based on low frequency signals and assembling such a system for 

wide bandwidth current monitoring may not be possible. 

The maximum measurement frequency for each of the fiber current sensor coils is 

listed in the last column of Table 5-1. Characterizations were performed at frequencies 
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that extend well beyond the cutoff frequency. In general, the measured magnitudes for 

the second lobes of the response functions show excellent agreement with the theoretical 

predictions. This can be seen in the response plots of Figs. 5-2 and 5-3. For some of the 

coil systems, several of the higher frequency response lobes were measured, and 

magnitudes always agreed with the predictions. (One such response curve, for coil #7, is 

shown in Fig. 6-6a and covers 12 frequency lobes.) The purpose of measuring current 

sensor frequency response beyond f,, is to produce a full understanding of the relative 

Faraday rotation magnitude as described in Eq. (5-3). By performing fits to the 

measured magnitude data, an accurate value for 02/2 can be extracted for a given sensor 

coil. This then gives additional information about the sensor phase frequency response, 

Eq. ( 5 - 3 ,  since the phase angle is much more difficult to measure experimentally. It is 

postulated that with enough knowledge of the high frequency response magnitude and 

phase, these Faraday effect cuiyent sensor coils could be used as wideband monitoring 

devices to frequencies above their 3 dB bandwidth. Near f,, however, the sensor 

response would eventually be limited by system S/N. 
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CHAPTER 6 

NONCENTERED CURRENT SENSOR COILS 

Fiber current sensor coils cannot always be properly aligned to have the coil and 

conductor axes coincident. In some applications, it may not be possible or even desirable. 

The high frequency Faraday response has been investigated for circular current sensor 

coils whose axis has a linear radial displacement with respect to the conductor. A model 

has been developed that predicts the frequency dependent Faraday rotation for such 

sensors. Experiments have verified the model for specific cases. In general, the radial 

displacement can assume any value, even those where the conductor lies outside of the 

coil cross section. The entry point of the light into the fiber coil relative to the conductor 

also plays an important role in coils with one or a few turns. Both theory and experiment 

indicate high frequency resonant responses for these noncentered coils. The magnitude 

of these resonances is dependent on several properties of the coil-conductor system. 

Noncentered Coil Model 

A noncentered current sensor coil is modeled using the geometry displayed in 

Fig. 6-1. The coil and field parameters are identical to those identified previously for the 

centered coil model, except here, the conductor axis is radially displaced from the coil 

axis by a distance X,. This displacement means that light propagating around the fiber 

loop will experience a spatially-dependent magnitude variation in the passing magnetic 

field. Light enters and exits the coil at a single point designated by the angle, a,, from 

the conductor position. Coil leads are neglected in this model. The current conductor is 

again treated as a filament of moving charge with point cross section. This allows for 

modeling of the specific configuration X, = R or where the conductor is at the fiber. 

From Fig. 6-1, the radial distance, r, between the conductor and the propagating 

light element, dl, on the fiber coil is given by the law of cosines: 



r2 = R2 + X: - 2RX,cos(a+ao)  . (6-1) 

The angle y between the magnetic flux density and the light element is also determined 

from the law of cosines. The relationship is rearranged to give 

R~ + r2 - X: 
2Rr 

cosy = 

\N Turn 
Fiber Coil 

Fig. 6-1. A geometrical model of a fiber current Sensor coil with the conductor 
displaced from the coil axis. 
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Combining Eqs. (6-1) and (6-2) yields the following expression for substitution into the 

integrand of Eq. (3-8): 

The required time dependence of y and r in Eq. (6-3) is provided by the rotating angle, a. 

As the light in the fiber propagates, this angle changes as 

C 
a(t) = - t .  

nR (6-4) 

The reference starting angle is then given by a, = (c/nR) t,, . 
Equation (6-3) can be transformed into an infinite series by using simple long 

division: 

Since the cosine function oscillates between 1 and -1, this series converges only when 

X,<R.  Substituting Eq. (6-5) into Eq. (3-8) provides the integral expression for the 

frequency dependent Faraday rotation, 

where z = (n/c)L = (n/c) 2nNR is used in the factor preceding the summation. In 
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Eq. (6-6) the summation and integration have been interchanged under the assumption 

that the series is absolutely convergent. The integration proceeds by rewriting the cosine 

function in its exponential form, 

r 1 

and rearranging to get 

Continuing with the integration leads to 

@(a) = O0 e 
m=O 

The expression for the light transit time, 2, in the N-turn circular coil can be 

rewritten in the form 

m c  
2 n R  

~ = m N r t .  05-91 

Equation (6-9) is substituted throughout Eq. (6-8). The phase factors for each term in the 

brackets of Eq. (6-8) further reduce to 
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mN( 2tg+1) 
e 3 

(6-10) 

since e-Jx = e Jx = - 1. In this model both m and N are always integers. The time delay, 

t,,, is unique only for values between zero and the transit time of light through a single 

loop of the coil, z, = VN. It is appropriate then to redefine as a fraction of 2, by 

(6- 1 1) 

where 5 is the fractional multiplier having values 0 5 5 < 1. A simplified expression for 

the noncentered sensor coil response is then 

(6-12) 

Equation (6-12) can be further simplified by combining the two terms in the 

bracket. First, a common denominator is found for this factor to yield 

The trigonometric identities for the sum and difference of two angles are then applied to 

reduce this factor to 

(6-13) 
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where cos(mNn) has become (-1)d. Substitution of Eq. (6-13) into Eq. (6-12) leads to a 

final expression for the Faraday rotation in a noncentered sensor coil: 

Equation (6-14) can be compared to Eq. (5-3) for the centered coil; obvious 

. (6-14) J 
similarities 

exist. If X, is set to zero in Eq. (6-14), only a single term in the series will exist, that 

being m = 0. Then the frequency dependent rotation reduces to Eq. (5-3) as required. 

The low frequency response for the noncentered coil sensor can also be evaluated. 

This is more easily accomplished using Eq. (6-12) instead of Eq. (6-14). If o = 0, Eq. 

(6- 12) becomes 

0(0> 
2sin(mNx) 

mNx 
(6- 15) 

m=O 

But sin(mNn)l(mNn) is non-zero only form = 0. Then for any value of X,/R, O(0) = 0, 

as expected. 

The response for the noncentered, circular coil given by Eq. (6-14) shows a 

dependence on the entry point for light propagation in the coil, the relative displacement 

of the coil axis, and the number of coil turns. The starting point for light in the fiber coil 

influences the response because of the series sign factor (-1)z"t. This factor has a 

diminished effect when N >> 6, or when the number of turns becomes large. Resonances 

will occur in the frequency response when w/2 is equal to integer multiples of Nn (6x12 

= m'Nn, form' = 1,2,3,  ...). At each resonant frequency, %, the series in Eq. (6-14) has 

only one term where m' = m f 0. (Note that m' = 0 produces the low frequency 

response.) The response given by Eq. (6-14) then becomes 
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which has a relative magnitude of 

(6- 16) 

(6-17) 

With X, < R, each successively higher resonance will have a diminishing magnitude. 

The maximum relative response will be ‘/z in the limiting case. 

Model Predictions 

Equation (6- 14) is evaluated for several different current sensor configurations to 

illustrate the effects of a noncentered coil on the high frequency Faraday response. Of 

particular interest are coils consisting of one turn for which conductor displacement 

effects are most pronounced. In Fig. 6-2 the relative magnitude of the Faraday rotation is 

plotted as a function of the normalized frequency, od2, for single turn sensor coils. The 

displayed curves result from varying the relative displacement of the conductor, X,/R, 

for two different entry points of light into the coil, 5 = 0.5 in Fig. 6-2a and 6 = 0 in Fig. 

6-2b. These light entry points correspond to the respective angular positions a,, = n and 

cto = 0 in Fig. 6- 1. 

In Fig. 6-2, curves are plotted where the conductor has a displacement of X, = R. 

This particular configuration is not physically realizable since the conductor and the fiber 

cannot occupy the same location in space. Also, when X, = R, the series convergence 

criterion established for Eq. (6-5) is violated and a singularity is produced in Eq. (6-3). 

However, finite solutions to Eq. (6-14) do exist when X, = R, Eq. (6-16) being evidence 

of such. Predictions are consistent with others in the noncentered coil model and 

represent the limiting response as X, approaches R. Under these assumptions, the 
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Fig. 6-2. The frequency dependent Faraday rotation response magnitude of a single 
turn, noncentered current sensor coil. The effects of relative displacement (x,/R) 

between the conductor and the coil axis are illustrated for (a) light entry into the coil 
farthest from the displaced conductor, 6 = 0.5, and (b) light entry into the coil nearest to 
the conductor, 6 = 0. 
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theoretical high frequency response at the X, = R limit are included in this study as a 

means of illustrating extreme effects. 

For both plots of Fig. 6-2, the 3 dB bandwidth is changed significantly as the coil 

and conductor axes become less concentric. In Fig. 6-2a the light enters and exits the 

single fiber loop at a point farthest from the conductor, 6 = 0.5, and AB increases with 

increasing XJR. Also, the nulls in the response curve disappear, and the higher 

frequency response lobes change shape, becoming less pronounced. Under these 

conditions the Faraday rotation does not have a defined cutoff frequency. In contrast, in 

Fig. 6-2b the light enters and exits the sensor coil nearest to the conductor, 6 = 0, and AB 

decreases with increasing X,/R. The value off,, decreases proportionally with AB, while 

the response magnitudes in the high frequency lobes increase with X,/R. Large response 

magnitudes appear at frequencies where previously there were nulls. In the limiting 

cases where X,  = R, AB has decreased to approximately 0.7 times that of the centered 

coil sensor when 5 = 0 (Fig. 6-2b) and has increased to approximately 1.5 times that of 

the centered coil when 6 = 0.5 (Fig. 6-2a). 

The dependence of the single turn coil response on 6 can be explained 

qualitatively. When the conductor is displaced in the coil cross section, the magnetic 

field strength is increased at those points of light in the fiber closest to the conductor; the 

Faraday rotation becomes concentrated in a shorter length of fiber. If the position of the 

conductor within the coil cross section is away from the light entry point, only one light 

pass is made through the enhanced region. The decreased effective interaction length 

naturally leads to an increased response bandwidth. On the other hand, if the conductor 

is now positioned toward the light entry point in the coil, the light must twice pass close 

to the conductor as it propagates around the single loop of fiber. Two regions of strong 

Faraday interaction are created, and the response is largest when these resonate with the 

field modulation. This resonance effect is best observed at 0th = n in Fig. 6-2b for the 

curve with X,/R = 1. Because of the phasing of the magnetic field with the propagating 
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light in the coil, an antiresonance must also occur between each of the resonance peaks. 

The first antiresonance in the Faraday response occurs somewhere between the 

frequencies 0th = 0 and 0th = n. As a result the 3 dB bandwidth is decreased. 

The changes in frequency response for the noncentered single turn coil compared 

to the centered coil are most pronounced for 5 = 0 and 5 = 0.5. For other values of 5, an 
intermediate response deviation is predicted. In Fig. 6-3 several Faraday response curves 

are shown for different 5, all with maximum conductor displacement, X, = R. A 

comparison can be made with the response for the centered coil, X,/R = 0, which is also 

plotted in Fig. 6-3. For values of 5 > 0.5, symmetry exists in the response predicted by 

0 n 2n 3n 

Normalized Frequency, O T / ~  

Fig. 6-3. The effects of the light entry point (5) in the coil on the frequency response for 
a single turn noncentered, circular coil with maximum conductor displacement 
(X,/R = 1). The dotted curve is a reference for a centered, circular coil. 
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Eq. (6-14): O(o,~) = @(a, 1-6) for 0.5 < 5 s 1. 

Few current sensor applications call for a fiber coil with only one turn; most 

require multiple turns for increased measurement sensitivity. When N > 1 in Eq. (6-14), 

many of the anomalous features observed in the Faraday response for a single turn are no 

longer present. Fig. 6-4 shows the predicted relative magnitude of the Faraday rotation 

for a five turn sensor coil. Notice the cutoff frequency for the noncentered coils, both for 

6 = 0 and 6 = 0.5, fall at the same frequency as that for the centered coil. This 

characteristic is seen in the response for all coils with two or more turns; only the single 

turn noncentered coils have a shifting f,,. 

In Fig. 6-4 resonant responses occur at frequencies where 02 /2  is an integer 

multiple of 5n. Here, the five turns in the coil, or the number of close passes between the 

propagating light in the fiber and the strong field from the conductor dictate the resonant 

conditions. Also, these resonances occur for the noncentered coil at frequencies where 

nulls exist in the response for the centered coil. The relative magnitudes for the 

resonance peaks are consistent with the predictions given by Eq. (6-17). For X,/R c 1, 

each higher frequency resonance has a smaller magnitude than the previous one. When 

X,/R = 1, the peak magnitudes are approximately %. Close inspection of the plots in Fig. 

6-4 shows that AB for the higher frequency resonance lobes is the same as that for the 

low frequency response lobe. 

In Fig. 6-4 the main lobe 3 dB bandwidth is indistinguishable from that of the 

centered coil response regardless of the X,/R or 5 value. This is quite different from that 

predicted for the single turn coil where significant bandwidth deviations occur. In 

general, for a fixed 5, AB changes as X,/R increases (the sign of the deviation in AB 

depends on e), and for a fixed X,/R, AB increases as 6 increases from 0 to 0.5. The 

change in AB from that of a centered coil diminishes rapidly as N increases. These 

bandwidth features are shown in Fig. 6-5 for sensor coils with N = 1, 2, and 3; the curves 

are plotted only for oz/2 I n to emphasize the main lobe response. The percent 

65 



1.0 

0.8 

mo 0.6, 
\ 

0" 
\ 
3 
0 
u 

0.2. 

0.0. 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 

I i i i 

N = 5  I 
X,/R = 1 

/X,/R = 0.5 

= o  a 

/ /X,/R = 0.5 1 

0 3n 6n 8n 12n 15n 

Normalized Frequency, O T / 2  

Fig. 6-4. The frequency dependent Faraday response for a five turn circular current 
sensor coil with varying relative axes displacement. Light enters the coil closest to the 
conductor (top) and farthest from the conductor (bottom). 
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Fig. 6-5. The effects of the number of coil turns and the light entry point on the 
bandwidth of a noncentered sensor coil with maximum conductor displacement. The 
dotted reference curve is for a centered, circular coil, X ,  = 0. The curve for 6 = 0 with 
N = 1 is truncated for frequencies above the first null for plot clarity. 

deviations in bandwidth are also given in Table 6-1 for noncentered coil responses with 

X,/R = 1, 6 = 0 and 0.5, and for N between 1 and 10. When 6 = 0, bandwidths are 

smaller than those for the centered coils, while with 6 = 0.5, bandwidths are larger. For a 

coil with ten turns, the bandwidth deviation is insignificant; AB can then be estimated 

using Eq. (5-7) or (5-8)  for the centered, circular coil. This indicates that for multiturn 

current sensor coils (N 2 lo), alignment of the coil axis with that of the conductor is not 

necessary if the range of interest is those frequencies below cutoff. 

The frequency response of the noncentered coil is quite similar to that of a 

recirculating tapped fiber delay line [64,65]. As mentioned previously, the magnetic 
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Table 6-1. 

Changes in the 3 dB Bandwidth for Noncentered Fiber Current 
Sensor Coils (XJR = 1) Compared to Centered Coils (X,/R = 0). 

2 

3 

5 

10 

-9.2% 

-4.6% 

-1.9% 

-0.4% 

N With 5 = 0.0 With 5 = 0.5 

1 -29.1 % +50.1% 

+5.8% 

+2.5% 

+0.8% 

+0.1% 

fields are largest at points on the fiber coil that are closest to the conductor, and as light 

propagates in the fiber, it experiences greater Faraday rotation in these regions. Once 

during each turn this Faraday rotation enhancement occurs; when the frequency of the 

oscillating field is in phase with this process, a resonant response is observed. This 

phenomenon is much like the extraction of light on each turn in the tapped delay line. 

Resonant response is observed in Eq. (6-14) when 0'1h = m'Nn Then the resonant 

frequencies are o, = 2nm' (N/T) or 

1 

71 
fR = m'- , (6- 18) 

where z, = VN has been previously defined as the transit time of light through one coil 

turn. This resonance frequency relationship has been observed for all Faraday responses 

predicted for the noncentered coil sensors. An exception is the response with N = 1 and 
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6 = 0.5; increased responses are observed at the correct higher frequencies, only the 

antiresonance nulls are missing. 

Three responses are plotted in Fig. 6-6 for X,/R = 1 but now as a function of a 

new normalized frequency, 02, /2 .  With this abscissa, all the higher frequency 

resonances coincide for sensor coils with varying numbers of turns. The sensor 

bandwidth still decreases with added fiber turns as expected. This type of behavior has 

been measured for the tapped fiber delay line with response dependent on the number of 

fiber taps and the propagation delay between taps [65].  

From Eq. (6-17) and Fig. 6-6, the peak magnitudes of the frequency response 

1 .o 

0.8 

0.2. 

0.0. 

X,/R = 1 

[ = O  i 
0 7r 27r 37r 

Normalized Frequency, OT~ / z  

Fig. 6-6. The relative Faraday response for noncentered current sensor coils versus a 

frequency that has been normalized by the number of turns. Resonances are observed for 
all three coils at frequencies determined by light transit time in a single fiber turn. 
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resonances are predicted to have a maximum value of approximately ?4 when the 

conductor is displaced to the very edge of the coil. This indicates that complete phase 

matching between the magnetic field propagating along with the conducted current and 

the light propagating in the fiber does not occur. Enhancements in the Faraday rotation 

that do occur as the light passes near the conductor once during each revolution around 

the circular coil are partially negated by out-of-phase interactions that occur when the 

same propagating light segment is further from the conductor and the magnetic field 

swings to opposite polarity. Complete phase matching can only occur for true point 

interactions between the magnetic field and the light, resulting in resonances with relative 

magnitudes of one. This type of Faraday effect current sensor is described in the next 

chapter of this document. 

Equation (6-14) has been used extensively to predict the magnitudes of the 

Faraday response for noncentered, circular coils, but it can also be used to determine 

phase angles. In general, the Faraday rotation should have a frequency dependent phase 

as expressed in Eq. (5-5)  for the centered coil; the phase is a simple function only of the 

total fiber length, T. However, the series sign factor (-1)2mc in Eq. (6-14) can introduce 

other phase deviations into the response of the displaced coil. If 6 = 0 or 0.5, the sign 

factor is real only, and no deviations occur. But if 6 has other values, the sign factor is 

complex. The resultant phase shifts are frequency dependent, increasing with X,/R, 

decreasing with N, and obtaining a maximum when 6 = 0.25, N = 1 and X,/R = 1. A plot 

of the frequency dependent phase for this maximum deviation configuration is shown in 

Fig. 6-7. Throughout the plotted frequency range (m/2 I 3n), the phase angle is slightly 

nonlinear and has a period approximately 2/3 that for the centered coil. 

It is not apparent whether the predicted phase anomalies are real - and 

observable in measurement systems - or are the result of deficiencies in the model 

developed to describe the noncentered coil frequency response. A frequency dependent 

phase shift other than that described by Eq. (5-5) was not anticipated in final 
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Fig. 6-7. The Faraday rotation phase shift for a single turn coil with maximum 
conductor displacement and with the light entry point at 90" to the conductor offset 
direction. The dotted reference curve is the response phase shift in a centered coil. 

computations. A check on the model was conducted by substituting cos(y)/r given by Eq. 

(6-3) directly into Eq. (3-8) and integrating numerically to determine both magnitude and 

phase. Results identical to those predicted by Eq.  (6-14) were obtained. If the model is 

in error, it exists in a more fundamental assumption. Obviously, more investigations are 

needed here. In the meantime, these uncertainties limit the capability of the noncentered 

coil model to predict complete sensor high frequency response functions. 

Nonetheless, radially displacing the fiber coil axis from that of the conductor does 

offer some potential for increased measurement bandwidth and the measurement of 

currents at higher banded frequencies. Using a single turn coil, significantly increased 
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bandwidth and higher frequency response can be achieved by proper placement of the 

loop. The biggest gain for fiber current sensor applications may be in exploiting the 

increased response at the higher frequency resonances. In designing such systems, the 

center frequency of the band is selected by the radius of the coil according to Eiq. (6- 18). 

Constraints on minimum radius must be observed to avoid bend birefringence problems. 

The Faraday sensitivity of the sensor is then determined by the number of fiber turns in 

the coil and the maximum amount of displacement that can be achieved. As observed 

from the model predictions of Eq. (6-14), the larger the offset, the greater the relative 

response magnitude in the high frequency band. Response bandwidth is then found from 

the total fiber length. AB must be traded off with sensitivity as established by the 

sensitivity-bandwidth product in Eq. (5- 10). 

Noncentered Coil Measurements 

In order to verify some of the predictions of the noncentered coil model, a 

specific set of parameters was chosen for a coil design and used in the experimental 

configuration shown in Fig. 4-1. The 1-GHz coaxial airline test cell was selected to 

generate the appropriate currents. Because of the space constraints in the working 

volume (outer conductor diameter of 13.3 cm and inner conductor diameter of 5.8 cm), 

only a limited range of coil diameters and relative displacement factors can be achieved 

in this cell. An experimental investigation of the high frequency response predicted for 

the single turn current sensor was desired, however, the small signal-to-noise ratio and 

the limited dynamic range for a one-turn coil in the assembled measurement 

configuration precluded such a test. A 10 turn coil with a 9.6 cm diameter was selected. 

Parameters of this coil appear as #7 in Table 5-1. The diameter of the fiber coil was 

optimized so that one edge touched the cell outer conductor while the opposite edge just 

wrapped around and touched the cell center conductor. This coil position gave the 

maximum-achievable displacement, X,/R = 0.38, measured from the axis of the center 
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conductor. The coil was configured so that fiber leads entered and exited from the same 

side and then was arranged inside the test cell so 5 = 0. 

The measured frequency response magnitudes for the sensor coil in both the 

centered and displaced position are shown in Figs. 6-8a and 6-8b, along with the 

appropriate model-predicted curves. In both plots, experiment and theory agree quite 

well. The predicted sensor bandwidth is 30 MHz and the cutoff frequency is 67 MHz. 

For the noncentered or displaced coil (Fig. 6-8b), a peak resonance first occurs near 675 

MHz, approximately where the tenth null exists for the centered coil frequency response. 

All the experimental response function peaks and nulls occur at the frequencies 

predicted. 

In Fig. 6-8b, the measured relative magnitude of the resonance peak near 675 

MHz is noticeably smaller than expected from the model. The predicted magnitude is 

0.19, but both experimental data sets indicate a reduced value. This discrepancy could be 

caused by one or more of the following factors. (1) Data scatter is significant near the 

resonance peak as seen for the plotted values in Fig. 6-8b. (2) The model neglects the 

presence of the fiber coil leads, which could be significant in determining frequency 

response near the resonances. And (3) the model treats the conductor as a filament of 

moving charge, while in reality the cell conductor has a large diameter and the current 

tends to concentrate in the outer skin at these high frequencies. 

Other key features predicted by the model and shown in Fig. 6-8b are verified by 

the experiments. One in particular is the missing response lobe just below 600 MHz. 

Also, the ratio of the peak magnitudes for the enhanced responses at 675 MHz and 765 

MHz is quite precise. The absolute magnitudes of the peaks do not agree well with 

predictions, however, the ratio does. Measurements above 800 MHz were attempted, but 

these were limited by RF interference in the detection equipment. Fortunately, response 

information at those high frequencies offers little to the understanding of the model. 
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Fig. 6-8. Theoretical and measured frequency response magnitudes for a 10 turn, 9.6 
cm diameter fiber current sensor coil. (a) Measured (points) and predicted (solid curve) 
responses for the centered sensor coil. (b) Measured (two point curves shown) and 
predicted (solid curve) responses for the noncentered sensor coil. 
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Conductor Outside the Coil 

Ampere's law given by Eq.  (2-2) equates the current in a conductor with the 

magnetic field strength integrated around any loop enclosing that conductor. For a fiber 

Faraday current sensor, no response is anticipated at low frequencies when the current 

conductor does not pass through the coil cross section. At the higher frequencies, 

though, a response does occur and is addressed here in a brief theoretical discussion. 

In the previous model for the noncentered coil, the relative displacement factor 

was taken to be less than one. However, the expression given by Eq. (6-3) remains valid 

even for XJR greater than one. Using this as a starting point, the series expansion is 

modified and results in 

m 
- -  cosy - -1 $ (e) cos[m(a+a0)] , 

R m=l  r 
(6- 19) 

or 

- = - [ 1 - 5 (e) cos[m(a+ao)] . (6-20) 1 m cosy 1 

m=O r R 

These series are complementary to Eq. (6-5) and converge for X, > R. When Eq. (6-19) 

is substituted into Eq. (3-8) and integrated over the transit time through the total fiber, 

the frequency dependent Faraday rotation is found to be 

This expression for the rotation is very similar to Eq. (6-14). Resonant responses occur 

at the same higher frequencies. One major difference is the absence of the m = 0 term in 

the series of Eq. (6-21); this previously was found to be a necessary condition for the 
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existence of the low frequency response. Thus when o E 0, O(0) = 0 for all N as 

expected. 

The relative magnitude determined from Eq. (6-21) is plotted versus the 

normalized frequency, ot/2, in Fig. 6-9 for two current sensor coil configurations: (a) a 

single turn with 6 = 0.5 and (b) five turns with 6 = 0. For both configurations no 

responses occur at zero frequency, but secondary lobes and resonant peaks are present at 

the higher frequencies. As the sensor coils are moved further away from the conductor, 

the response magnitudes decrease at all frequencies as expected. Eventually as X,/R 

grows larger, the conductor and coil are separated by such a large distance that magnetic 

fields are too small to induce any significant Faraday rotation in the fiber. 

In Fig. 6-9a the effects of the light entering and exiting the fiber coil farthest from 

the conductor (6 = 0.5) are again illustrated. As discussed previously in conjunction with 

Fig. 6-2b (conductor inside the coil), a single turn coil will exhibit a continuous and 

enhanced higher frequency response with the proper positioning of the conductor and the 

coil. The Faraday response magnitude for the solid (X,/R = 1) and dashed curves in 

Fig. 6-9a are symmetric about the magnitude Vi. The frequency response with the 

conductor just outside the coil is simply one minus that response when the conductor is 

just inside the coil. This phenomenon is the result of the sign change that occurs in B dl 

for that fiber section just adjacent to the conductor. It is also evident in the frequency 

dependent angle/distance relationships, Eqs. (6-5) and (6-20), which are simple 

complements when X, = R. 

In Fig. 6-9b, the characteristic resonance responses for the noncentered coils are 

again observed. The center frequencies of the resonant bands fall at m / 2  = m'Nn, 

exactly the same as those predicted for a coil with X, c R. Resonance bandwidths are 

again determined by the total fiber length. If X,/R = 1, the peak relative magnitudes are 

all approximately %, but when X,/R > 1, each successively higher frequency resonance is 

weaker than the previous one. 
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The theoretical high frequency Faraday rotation relative magnitude for fiber 
current sensor coils with the conductor outside the coil cross section (XJR 2 1). (a) A 
single turn coil with light entering farthest from the conductor, and (b) a five turn coil 
with light entering nearest the conductor. 
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This model of a conductor external to the fiber sensor coil was not verified 

experimentally. The frequency range for the TEM mode in the 50 R coaxial airline test 

cells is not compatible with the expected frrst resonance frequency or other significant 

features predicted by the model. Experimentation may be possible in a modified test 

cell, but for now this concept remains a theoretical curiosity. 
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CHAPTER 7 

COILS WITH NONCIRCULAR CROSS SECTION 

The shape of the planar coil cross section can produce changes in the high 

frequency Faraday response much like the resonant enhancements created by 

displacement of the coil and conductor axes. In this chapter, the Faraday rotation is 

investigated for coils with noncircular cross section, and the effects at the higher 

frequencies are observed. Coils with two particular geometries are studied: (1) those 

with a highly elongated cross section and the current conductor fully displaced to one 

edge of the fiber coil, and (2) those with a rectangular cross section and the conductor 

either centered or displaced within the coil. The first geometry represents a unique 

situation since the magnetic field interacts only with a small segment of the fiber in each 

turn. Essentially complete phase matching can occur for this interaction; and the 

resulting "delta function" Faraday response produces higher frequency resonances with 

peaks approaching relative magnitudes of one. This response is in contrast to the 

magnitude limit of approximately ?h for the noncentered, circular cross section coil 

discussed in the previous chapter. The rectangular coil geometry provides a simple 

framework for investigating frequency responses for all configurations of coils, those 

with centered or displaced conductors and those with varying degrees of cross section 

eccentricity. Also, predictions from the rectangular coil models are easily extrapolated to 

other coils of arbitrary cross section. Only theoretical studies were possible for the 

rectangular coils, but experimental verifications of the delta function interaction were 

performed using two specific coil implementations. 

Delta Function Remonse Model 

A highly elongated fiber sensor coil is shown in Fig. 7-la. In the limit, the 

conductor can be treated as a point source with the fiber loop making a tight bend just 
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around the conductor. Realistically, this configuration is impossible since mechanical 

limitations prohibit such bends and the bend-induced birefringence would be extremely 

large. But theoretically, this coil cross section is ideal: Faraday rotation occurs only for 

light in that segment of the fiber adjacent to the conductor. At all other points on the 

fiber coil, the magnetic field is orthogonal to the light propagation and zero response is 

recorded. Because this interaction occurs in a small spatial region, TEM mode 

constraints on the current-produced field can be relaxed; but for the purpose of extending 

the results of this model to more practical coil configurations, the fields along the 

conductor are assumed to be planar. 

Figure 7-lb illustrates the ideal path followed by the light propagating in the 

When the fiber passes near the conductor, it is assumed to make a tight, fiber. 

Current 
Conductor 

- 
_I__+ 
-t t = O  

Fig. 7-1. The delta function response fiber current sensing model. (a) The current 
conductor is fully displaced inside a highly elongated fiber coil cross section. (b) The 
mathematical treatment of the light path. 
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approximately circular loop at a constant radial distance R, from the point conductor. 

The magnetic flux density in this short segment of fiber is then given by Eq. (3-1) with 

r =  R, and k 0 I = 0. The field is assumed always to be codirectional with the 

propagating light in the fiber loop, so that the local interaction is described by 

At points along the straight segments of the fiber coil (away from the circular bend) 

shown in Fig. 7-lb,  the general field-light interaction is described by 

B dl = B COS($ dl , (7-2) 

which is Eq. (3-2) with w = d 2 .  In these straight segments, however, y is always taken 

to be d 2 ,  and B dl = 0. Then, substituting Eq. (7-1) into Eq. (2-1) and converting to 

time-dependent integration yields 

which describes the frequency dependent Faraday rotation in a single turn of the 

elongated fiber current sensor. The integration times, t, and 6, are as indicated in Fig. 

7-lb. In a multiturn coil, the fiber will make N passes by the conductor. The total 

Faraday rotation then becomes the sum of that for each individual interaction. Also, 

during each pass the integration times must be appropriately delayed to account for 

variations in the oscillating magnetic field. In general, t,, = mz, + (7, - z,/2 and 6 = mz, 

+ 6~~ + T, /2 for m = 0 to N - 1 ;  z, = 2nR, (dc) is the transit time of the light through 
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each small, circular segment, and 52,  is an arbitrary time delay from the entry point of 

the light in the fiber (identical to that introduced in Eq. (6-1 1)). The Faraday rotation for 

the N-turn elongated coil is given by 

Proceeding with the integration leads to 

and a final solution of 

m=O 
, 

The low frequency response, @,(a) for the entire coil is given by Eq. (2-3). 

The concept of a point interaction between the magnetic field and the propagating 

light is now introduced by allowing 7, + 0. The factor sin(oz, /2)/(m, 12) in Eq. (7-6) 

becomes unity, and an expression for the "delta function" Faraday response results: 

The time delay created by the light entry point produces only a phase delay in the final 
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rotation, which, in this model, has no impact on the magnitude of the Faraday rotation. 

In fact, the arbitrary light entry point is significant only if it occurs exactly at the 

conductor so that N + 1 interactions are produced for N loops in the coil. This is quite 

different from the delay introduced in the noncentered, circular coil model where the 

light entry point had a large impact on the magnitude of the Faraday response for all 

values of 5. In order to avoid the confusion in this delta function model between the 

number of close passes the light makes by the conductor and the number of turns in the 

coil, the light is assumed to enter at or near the zero location indicated in Fig. 7-lb. Then 

N will represent both quantities. Consequently, 5 = '/z in Eq. (7-7), and 

N -1 -ja2A 1 -j o m  2, 

m=O 
Og(o) = O o e  - E e  

Or, since z, = T/N, 

(7-8) 

(7-9) 
I\ m=O 

These expressions for the frequency dependent Faraday rotation can also be 

derived by simply treating the field-light interaction as a series of delta functions 

separated in time by the transit time of the light through a single coil turn, T,, and 

delayed in time by Sz,: 

N -1 
B e d l  = p f i  e -jot 6(t -mT, -52,) dt . 

m =O 

(7-10) 

When Eq. (7-10) is substituted into Eq. (2-1), the equivalent time integral becomes 
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Completing the integration yields Eq. (7-7). This treatment is much simpler, however, it 

is less elegant than the initial approach and lacks the generality needed for later 

developments. 

If a fiber current sensor makes only a single pass by the conductor, the magnitude 

of the Faraday response from Eq. (7-9) is lO,(o)l = bel, and an infinite bandwidth 

results. This prediction is expected from the definition of the delta function interaction. 

For two passes by the conductor, 

(7- 12) 

For a coil with N loops, a general expression for the response magnitude is 

(O,(w)l = 10ol 
m=O m=O 

and the phase angle is 

-1 9 = -tan 1 .  (7- 14) 

Equation (7-13) is plotted in Fig. 7-2 for N = 2 and N = 5. The plot abscissa is 

the normalized frequency, W 2 .  Response resonances occur when 0th equals a multiple 
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Fig. 7-2. The Faraday rotation relative magnitude versus normalized frequency for delta 
function current sensor coils with two and five turns. The dotted reference curve is the 
response for a centered, circular coil. 

of Nn, with the number of intervening nulls equal to N - 1. The response magnitudes in 

Fig. 7-2 for N = 5 resemble those for the noncentered, circular coil, Fig. 6-4, except 

higher frequency resonances now have a unity relative magnitude instead of %. This 

unity magnitude results from complete phase matching between the magnetic field and 

the propagating light at each of the single-point interactions. As light in the fiber 

propagates away from the conductor, it experiences no further out-of-phase rotations that 

reduce the resonance magnitude as in the noncentered, circular coil. Also observed in 

Fig. 7-2 that is not seen in Fig. 6-4 is the complete frequency symmetry of the lobes and 

nulls about each resonance - each rising and falling frequency edge is symmetric about 
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the lobe/resonance center frequency. The bandwidths of the main response lobe and each 

of the higher frequency resonance lobes are also equal. 

Equation (7-13) can also be plotted with the normalized frequency a , / 2  as the 

abscissa; such a plot appears in Fig. 7-3. The similarities between Figs. 6-6 and 7-3 are 

obvious. The responses illustrated in Fig. 7-3 are identical to those previously discussed 

for the tapped fiber delay line for N fiber taps (see Chapter 6). Comparisons can be 

made to similar figures in Ref. 65. 

The Faraday response bandwidths for coils configured for a delta function 

interaction can be significantly larger than those for the centered, circular coils made 

0 7l 27T 

Normalized Frequency, OT1/z 

Fig. 7-3. The relative magnitude of the Faraday rotation from Fig. 7-2 replotted versus 
the normalized frequency m%/2. The dotted reference curve is the response for a 
centered, circular coil. 
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with the same length of fiber. This is obvious for a single loop coil which produces a 

theoretically infinite bandwidth. In Fig. 7-2, a notable difference in bandwidth is 

observed for the N = 2 curve compared to the centered, circular coil response even 

though the cutoff frequency for the two curves is identical. Using Eq. (7-12), the 3 dB 

response point for N = 2 will occur when 

1 cos - - - . (Oqur) - J5 
Then 

C AB = 
4 n R n N  ’ 

(7- 15) 

(7-16) 

which is larger than the bandwidth for the centered, circular coil, Eq. (5-7), by 12.8%. 

As N increases the bandwidth for the delta function coil quickly approaches that for the 

centered, circular coil. Extracting data from the numerical computations of Eq. (7-13), 

the bandwidth increases are 5.1% for N = 3, 1.3% for N = 5 and negligible when N z 7. 

These bandwidth deviations can be compared to those of the noncentered, circular coil in 

Table 6-1 for the same value of N; larger response bandwidths result from the point 

interactions. 

Based on the predictions from this delta function model, as well as those from the 

noncentered coil model, a general statement can be made about fiber current sensor coil 

configurations: for sensors with large numbers of fiber turns, the Faraday response in the 

low frequency main lobe is unaffected by displacement or coil cross-sectional shape; 

only sensor response at the higher frequencies is modified. 

Although it is not obvious from a first look, the response phase given by Eq. 

(7-14) can be reduced to - W 2  for all values of N. This is easily identified for N = 2 by 

inspecting Eq. (7-12). As a further example, if N = 3, Eq. (7-14) is rewritten as 
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sin (7) + sin (y )  + sin ( y )  1 
c o s ( ~ ) + c o s ( ~ ) + c o s ( ~ )  

4 = -tan (7- 17) 

The sine functions are expanded into 

s i n ( 6 )  5 0 2  = sin(?+?) = sin(~)cos(~)+cos(~)sin(~) , 

Then Eq. (7-17) becomes 

2 sin(?) cos(?) +sin(?) 1 = [ sin ( ) [1+ 2 cos( )] 
= -tan-' - an-' C O S ( ~ ) [ l + 2 c o s ( ~ ) ]  

2 c 0 s ( ~ ) c 0 s ( ~ ) + c 0 s ( ~ )  

(7-18) 

Determining the phase in this mathematical fashion for larger N quickly becomes 

unwieldy, but the solution is always the same, + = - m/2. This phase is identical to Eq. 

(5-5) for the centered, circular coil indicating that phase in this sensor configuration is 

also dependent only on the total light transit time or the total fiber length. 

The Complete Resaonse Model 

Based solely on the delta function interaction, the Faraday response resonances 

displayed in Fig. 7-2 would extend unattenuated (at unity) to infinite frequency. Such a 
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system, of course is not physically realizable, and the previous presentation of the delta 

function response model must be considered only for its conceptual value. A more 

realistic model is constructed by recognizing that O,(o) in Eq. (7-9) is the transfer 

function for an ideal fiber current sensor having N point interactions. The transfer 

function is then used to construct complete frequency response functions for physical 

systems. In general, for each pass of the fiber near the conductor, the interaction length 

between the magnetic field and the propagating light in the fiber may be small but is 

finite. The two propagating electromagnetic signals become convolved over this short 

interaction length. Then in the frequency domain, the Faraday response for the coil 

system is nothing more than the transfer function, Eq. (7-9), multiplied by the expected 

frequency response for the short fiber length while making a single pass. 

If the short interaction length is given as e, the function @,(a) describes the 

response for a single interaction. The complete frequency dependent Faraday rotation, 

which depends on the number of passes N, is then the product of two functions, 

O(0) = O&o) . O@) . (7-19) 

The function @,(a) can be labeled an envelope function, since in the frequency domain, 

it bounds the resonant response due to @,(a) alone. If a functional form for @,(a) can 

be identified or computed for a single pass of the fiber by the conductor, then the rolloff 

in the magnitudes of the higher frequency resonance peaks can be established. 

By inspecting Eq. (7-6) and comparing it to EQ. (7-19), one functional form for 

the envelope function, @,(a), can be determined. The function sin(oz,/2)/((iYtt/2) is a 

direct result of using a short circular fiber loop in the derivation of the model for the 

highly elongated coil. And as would be expected, this function is equivalent to Eq. (5-3), 
less the phase factor, when the appropriate transit time 2, = (n/c)t is used. 

Approximating the short interaction length with a circular loop is often a good estimate 
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for many fiber current measurement systems. In particular, such a description allows for 

quick computations of the magnitudes of the resonance peaks since they fall under a 

well-defined enveloping function. 

Using Eq. (7-19), the frequency characteristics of the complete response function 

for a multiturn coil in a delta function configuration are determined by three separate 

parameters of the fiber current sensor coil. All of these parameters are related to well- 

defined lengths of different fiber sections and can be used in the design of optimum 

sensor coils. (1) The resonance peaks in the response function occur at higher 

frequencies (see Eq. (6-14)) related to propagation through one loop of the coil, 

L, = (c/n)z,. (2) The bandwidth of the main response lobe and the bandwidths of all the 

unattenuated higher frequency resonance peaks are found from the total length of fiber in 

the coil, L. And (3) the enveloping magnitude of the resonance peaks is determined by 

the short interaction length, e, of a single pass of the fiber by the conductor. For most 

applications that exploit the advantages of the delta function response model, the 

relationship between these three lengths will be f? << L, 5 L. 

Interesting phenomena result from use of the complete response function in Eq. 

(7-19) when l is not small compared to L,. A trivial result occurs for N = 1 in @,(a); 
@(a) = @,(o) e-Jur’2 as expected, regardless of the value of f?. But if N > 1, the 

formulation of Eq. (7-19) provides a shortcut for determining the frequency response for 

more complicated coil systems, especially those that use double-pasdreflective 

geometries or series of identical coils. As an example, assume a multiturn, circular coil 

is used and one lead is terminated such that the light is reflected back through the coil. 

Light injection and detection are both accomplished at the nonreflecting lead. Such a 

current sensor coil configuration is used in high sensitivity systems to reduce the effects 

due to reciprocal interactions such as stress or temperature-induced birefringence 

changes. If the coil is centered about the conductor, @,(a) is simply sin(oz, /2)/(02, /2), 

for 2, = 2nR, N, (dc) the one pass transit time through the entire coil, N, turns. The delta 
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function response accounts for phase delays in the light propagation. Here N, (number 

of light passes) = 2 and @,(o) is given by Q. (7-7) with 6 = 0 and z1 = Td, the time 

required for light to propagate from the middle of the coil, U2, to the reflection point and 

back. By definition, 7, 2 7,. The complete Faraday response is then 

Similar descriptions of the Faraday response can be derived for other sensor systems. 

Demonstration of the Model 

The delta function response model was verified using the two fiber coil 

configurations shown in Fig. 7-4. Both experimental systems used the coaxial test cell 

#2 listed in Table A-1. This cell has an inner conductor diameter of 2.5 cm, an outer 

conductor diameter of 5.75 cm, and a HOM cutoff frequency of 2.3 GHz [34]. All coils 

had 10 loops of fiber with each loop being approximately two meters in length and with a 

small portion of each loop passing through the cell. The Faraday response is then limited 

to the interactions with light in those short segments of fiber inside the cell; outside the 

cell, no field exists and the propagating light experiences no induced rotation. In the first 

configuration (Fig. 7-4a), the fiber made a short turn around the cell center conductor 

entering and exiting the cell at the same point. This simulates very closely the light path 

illustrated in Fig. 7-lb. In the second configuration (Fig. 7-4b), a straight fiber section 

passed near the center conductor with the fiber entering and exiting on opposite sides of 

the cell. The various lengths in the fiber coil were chosen to achieve a narrow response 

bandwidth and to place several of the resonance peaks at frequencies that were within the 

measurement range of the experimental instrumentation. 
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Fig. 7-4. Two fiber coil configurations used to demonstrate the delta function response 
model. 

The relative magnitude of the Faraday rotation measured using the first experimental 

configuration is shown in the two graphs of Fig. 7-5. In Fig. 7-Sa the model response, 

depicted by a solid curve, and the experimental results, shown as the open circles, are 

plotted for the lower frequencies. The resonance peaks are spaced about 101 MHz apart, 

the bandwidths are approximately 4.5 MHz and the cutoff frequency occurs at 10.1 MHz. 

Although the model and experimental curves in Fig. 7-5a agree well for the frequencies 

near resonance, the responses at the intervening frequencies do not agree at all. The 

secondary lobe magnitudes and the null frequencies do not match. Symmetry of the 

measured values about the resonance frequencies, however, is preserved. 
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Frequency (MHz) 

Fig. 7-5. The measured (open circles) and predicted Faraday response at low 
frequencies (a) and higher frequencies (b) for a 10 turn test coil with short tight loops 
around the conductor. The solid curve in (a) represents the theoretical behavior near and 
below the first higher frequency resonance. In (b), the dashed curve is an estimate of the 
response of an enveloping function for the short fiber length interaction, and the plotted 
points are measured values only at frequencies near the resonance peaks. Error bars 
represent total scatter in the measured values. 
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Much of this disagreement between measurement and model is attributed to bend- 

induced linear birefringence created by the tight turns as the fiber loops around the cell 

center conductor. This coil was prepared using the twisted and rejacketed fiber with 40 

twistdm [29], which should have been adequate for testing at this diameter; but 

apparently when tight bends are introduced, the fiber jacket breaks free from the glass 

and the twist relaxes. By modifying the bend radius of the loops within the cell, 

significant changes were noted in the frequency response. The curves plotted in Fig. 7-5 

represent the best agreement between the model and the experiment. Although the 

presence of linear birefringence in the fiber is believed to produce perturbations in the 

frequency response of the Faraday rotation, a detailed investigation of this phenomenon 

goes beyond the present scope of this study. 

The finite interaction length of the short fiber loop inside the test cell causes a 

rolloff of the resonance peak magnitudes at the higher frequencies. This feature is seen 

in Fig. 7-5b. The experimental data are plotted only at the peaks of each resonance. The 

dotted curve is a rough estimate of the envelope function computed using the magnitude 

1 sin(ozt/2)/(oz,/2) I from Eq. (7-6). Although the 10 loops of fiber inside the cell are 

not circular in cross section, an average length is estimated for these fiber segments and 

used to determine a value for T,. As seen in Fig. 7-5b, the experimental data are bound 

by relatively large error bars, especially at the higher frequencies. These uncertainties, 

coupled with some residual linear birefringence effects in the fiber and the imprecise 

estimates used for the model envelope function, make quantitative comparisons of the 

curves in Fig. 7-5b difficult. The general trend in the measured data, however, follows 

the prediction. 

The second experimental configuration (Fig. 7-4b) was designed to remove the 

interfering effects from bend-induced linear birefringence. This was achieved by using 

only short, straight fiber segments passing through the cell without any bending. Results 

from measurements using this arrangement are shown in Fig. 7-6 along with the model 
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predictions. The measured and calculated responses near the resonance frequencies agree 

well, just as they did for the first configuration. In this case, however, the measured 

secondary lobe magnitudes and the null frequencies between the resonances are much 

closer to those predicted by the model. Exact identification of the nulls was difficult 

with this type of current monitor since a 10 dB loss in sensitivity occurs. This sensitivity 

loss results from having only a partial turn of optical fiber inside the cell acting as the 

sensor, whereas in the first configuration, a full sensor turn around the center conductor 

existed. 

A nice feature of this second experimental configuration is that it lends itself to a 

relatively simple computation of the complete response function. Each of the ten straight 

sections of singleniode fiber passing through the cell will experience a rotation given by 

(7-21) 

where 2, = (n/c)! is the transit time of light through the straight section and a, is the 

distance of closest approach the fiber makes with the axis of the cell center conductor. 

Here 0, = VB,!, where B, is an arbitrary static flux density created by the current at unit 

distance from the conductor. Equation (7-21) must be normalized to the low frequency 

response to remove the dependence on Bo and other geometric parameters. Integrating 

for o = 0 results in 

2 n a. (7-22) 

The normalized Eq. (7-21) is integrated numerically to produce the envelope function, 
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(b) 

Fig. 7-6. The measured (open circles) and predicted (solid curves) Faraday response at 
low (a) and higher (b) frequencies for a test coil with short straight segments passing near 
the conductor. Only measured values near the resonance peaks are plotted in (b). Error 
bars on the measured values represent total data scatter. 
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and then substituted into Eq. (7-19). The resulting high frequency model response is 

used to generate the solid curves in Fig. 7-6. Resonance frequencies, bandwidths and 

cutoff frequencies predicted by this model are identical to those of the fust experimental 

coil configuration. These features are expected since they depend only on z and z, (or 

equivalently on L and L,) which are identical for both coils. The high frequency rolloff 

of the resonance peak magnitudes, however, is dependent on zt and a, in J5q. (7-21). 

Here, a, = 1.52 cm and ! = 4.85 cm. The transit time of the light through the short fiber 

section inside the cell is 2, = 0.24 ns, producing an envelope function with 3 dB 

bandwidth and cutoff frequency of 1.87 GHz and 4.2 GHz. The resonance peaks in Fig. 

7-6b are plotted only to approximately 400 MHz. Unfortunately, RF interference in the 

measurement instrumentation (peculiar to this experimental configuration only) 

precluded data recording to nearer the 3 dB bandwidth of the envelope function. 

Rectangular - Coils 

Fiber current sensors coils with rectangular cross sections (though not practical to 

implement because of the sharp corners) are excellent for the theoretical study of high 

frequency effects in the Faraday response. This particular geometry is chosen for 

modeling because (1) it represents a coil cross section that is noncircular in all respects, 

thus exhibiting several unique high frequency features; and (2) it lends itself to a simple 

analytical description for predicting centered, noncentered and highly elongated coil 

frequency responses. Ideally, a model of an elliptically-shaped coil is desired to 

represent a realistic fiber current sensor coil that might have a displaced conductor or a 

compressed cross section; however, the mathematical treatment is quite complicated, and 

the resulting model begins to break down as the coil becomes very eccentric. The 

rectangular coil model provides a good compromise for this study. 

The Faraday response model is constructed using the geometry shown in Fig. 7-7. 

Expressions similar to Eq. (7-21) are used to determine the rotation in each segment of 
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the rectangular cross section. The rectangle has dimensions 2w (width) by 2h (height). 

Light enters the coil at the location marked by to in Fig. 7-7. One complete loop around 

the rectangle requires light travel through five fiber segments; the total number of fiber 

segments in the coil is then 5N. The Faraday rotation in the first segment is 

where m is the turn counter, 0 to N - l , ~ ,  = 2(w + h)(n/c) is the light transit time through 

one complete fiber loop, and t, = h(n/c). In the second segment (top horizontal), 

Light Direction 
4- tl 

-b 
Conductor ‘Fiber coil 

Fig. 7-7. 
displaced in the coil cross section, and the coil shape is allowed to vary. 

The geometrical layout for the rectangular coil model. The conductor is 
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n - j o t  
02(o) = VBo(:)h 

c, 

T d t  ' J h 2 +  (;)2[mq + t l  + C ( w + x , ) -  n t 

mzl + tl 
(7-24) 

where = t, + 2w(n/c). The third segment (left vertical) produces a rotation given by 

mzl + t3 

- j o t  e 
03w = VBo(:)(w-xl) J (w - + (:)* [mTl + t2 + - h  n - t 

C r n q  + t2 

(7-25) 

where t, = 4 + 24. An expression for O,(o) for the lower horizontal segment is similar 

to Eq. (7-24) with appropriate changes in the time; and the final rectangular segment has 

a rotation, @,(a), similar to Eq. (7-23). The total response is computed by summing the 

individual rotations, then noimalizing to the zero frequency rotation. 

Equation (7-26) is evaluated numerically to determine the total Faraday rotation. 

Throughout the computations, the rectangle geometries will vary, but the perimeter of the 

rectangle is held constant so that total transit time, 2, is the same as that in an equivalent 

circular coil. The light entry point into the fiber can also be varied by letting XI > 0 to 

simulate 6 = 0.5 and setting XI c 0 for 6 = 0. 

The frequency response of the Faraday rotation for the rectangular coil models 

are plotted in Fig. 7-8. In the models leading to these two plots, the conductor is allowed 
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Normalized Frequency, 07/2 

Fig. 7-8. Model predictions for a Faraday effect fiber current sensor coil with a varying 
rectangular cross section. (a) A single turn coil with the conductor centered in a square 
cross section and with the conductor displaced to the coil edge in a direction away from 
the light entry point. The rectangular cross section is varied with the conductor 
displaced. (b) A two turn coil with the conductor displaced to the coil edge. The dotted 
curve in each plot is the reference for an equivalent centered, circular coil. 
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to move toward the fiber coil (X, > 0) and the rectangular cross section is varied. The 

dotted curves in both Figs. 7-8a and 7-8b are the response for a centered circular coil 

which has a circumference equal to the perimeter, 4(w + h). In Fig. 7-8a, the response 

for a single turn square coil (widthheight = 1) is shown. This response has identical 

main lobe bandwidth and cutoff frequency as that for the centered, circular coil. 

However, a noticeable deviation in the curves occurs near 0t/2 = 47t. This is due to the 

four-fold symmetry created by the four identical coil sides. As might be expected, the 

exact shape of this small response enhancement near 0z/2 = 47t will depend on the choice 

of light entry point in the square coil. Also shown in Fig. 7-8a is the effect of displacing 

the conductor to the edge of the square coil (w/h = 1, X, - w) in a direction away from 

the light entry point (equivalent to X, /R - 1 and 6 = 0.5 in the circular coil). This curve 

shows an increased bandwidth in the low frequency lobe and higher frequency 

oscillations that result from both two-fold and four-fold symmetries. This curve can be 

compared directly to its counterpart for the circular coil in Fig. 6-2a. Noted similarities 

are the lack of response nulls at the higher frequencies and relative response magnitudes 

near %. 

With the conductor fully displaced, the rectangular coil cross section is 

compressed to a highly elongated state. Response curves are shown in Fig. 7-8a for an 

intermediate compression state (w/h = 10) and near total compression (w/h = 100). The 

frequency response for the coil with large eccentricity and near-maximum conductor 

displacement approaches that of the delta function model for a single turn coil. This 

response exhibits a near-infinite bandwidth. 

In Fig. 7-8b the Faraday response is shown for a two-turn coil, again with the 

conductor displaced almost fully to the edge of the coil; the cross section of the rectangle 

is allowed to vary in shape. For the square coil, resonant responses are observed near the 

frequencies defined by ad2 = 2m'n. This resonant behavior is very similar to that of the 

two-turn circular coil with displaced conductor. The relative magnitude of the first 
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higher frequency resonance peak for the square coil in Fig. 7-8b is near %, and the 

magnitudes of subsequent higher frequency peaks diminish. If the model were to allow 

the limiting case of X, = w without producing a singularity, the magnitude of all the 

higher frequency resonances would be '/z as demonstrated for the circular coil in Chapter 

6. As the cross section of the rectangular coil is compressed, the relative magnitude of 

the resonance peaks in Fig. 7-8b increases. When w/h = 100, the predicted Faraday 

response approaches that of the delta function model shown in Fig. 7-2 for N = 2. The 

bandwidth increase in the main lobe is noted, and the magnitudes of the higher frequency 

resonances are very near one. 

The curves in Fig. 7-8 are presented to help visualize the frequency responses for 

coils that are in intermediate states between a symmetric (Le., circular) coil with fully 

displaced conductor and a highly elongated coil with fully displaced conductor. During 

the transition of coil cross section between these two states, the magnitude of the 

resonance response peaks (see Fig. 7-8b) progresses from approximately '/z to very near 

unity. It is expected that coils that initially have a circular cross section will exhibit 

similar high frequency responses as the cross section is compressed. 

Many general high frequency characteristics of fiber current sensors can be 

investigated theoretically using the rectangular coil model. One good example is a single 

turn coil with the conductor placed at the center and the coil cross section compressed. 

Modeling the initial shape as a square, the frequency response begins as that seen in Fig. 

7-8a for the curve with w/h = 1 and X, = 0. After compression, the response is much like 

the curve in Fig. 7-8b for w/h = 100. The current sensor response will resemble that of a 

"double delta function", since in the highly elongated state, the light in the fiber makes 

two close approaches to the conductor for a single coil turn. The frequency spacing 

between resonances is determined from the transit time of light through half a coil turn, 

~ , / 2 ,  resulting in 0,d2 = 2mh, which is exactly that shown in Fig. 7-8b for the two-turn 

coil. 
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The resonance phenomenon just described is observable in the frequency 

response of almost any fiber coil with arbitrary cross section. If the conductor is 

centered in the coil cross section, then the sensor main lobe bandwidth and frequency 

response will closely approximate that of the centered, circular coil. Deviations in the 

higher frequency response will result from symmetries peculiar to the chosen coil 

geometry and the choice of the light entry point. Then in the highly elongated state, the 

response will approach that predicted by the delta function model. Also, it is easily 

envisioned that specific features in the responses for coils with displaced conductors in 

arbitrary cross sections can be predicted using information already generated from the 

delta function and rectangular coil models. In general, it appears that predicting the 

Faraday frequency response for many coil geometries is possible through use of the 

framework developed here for the noncircular current sensor coils. 
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CHAPTER 8 

TRAVELLING WAVE FIBER CURRENT SENSORS: 

BASIC CONCEPTS AND THEORY 

Manipulation of the fiber current sensor coil cross section and the position of the 

conductor relative to the coil changes the higher frequency characteristics of the Faraday 

response, but has limited effects on the sensor bandwidth, especially for multiturn coils. 

Bandwidth can be enhanced in the transit time limited fiber sensors by deviating from the 

planar coil structure and expanding the fiber into a helix. In this geometry the 

electromagnetic wave propagating along the conductor experiences partial phase 

matching with the light propagating in the fiber. This travelling wave configuration 

enhances the Faraday rotation at the higher frequencies, and thereby increases the 

bandwidth. 

The travelling wave concept has been used extensively in electro-optic 

modulators [62], and integrated optic devices with bandwidths well beyond 10 GHz have 

been fabricated [66] .  In these modulators, however, the Pockel's effect (interaction 

between the light and the electric field) is used, and the two interacting signals propagate 

codirectionally and in the same dielectric medium. In a fiber current sensor, the 

magnetic field is generally orthogonal to the direction of current propagation, while the 

Faraday rotation is dictated by B 0 dl and is maximized when the field and light are 

codirectional. Implementing a Faraday effect travelling wave concept is thus much more 

difficult since both B and k cannot simultaneously be directional with the light. The 

helical coil geometry allows for partial phase matching, but further enhancement of the 

Faraday signal requires slowing the propagation of the electromagnetic wave. 

Travelling Wave Fiber Current Sensor Model 

A basic travelling wave fiber current sensor is shown schematically in Fig. 8-1. 
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The helical singlemode fiber coil is immersed in the dielectric of a coaxial transmission 

line. If the frequency of operation is limited to a range where only a TEM mode exists in 

the transmission line and the fiber coil is centered about the coax center conductor, then 

Eq. (3-9) describes the Faraday response for the system. It is possible for the coil to 

assume any position relative to the center conductor, which then requires use of Eq. (3-7) 

to fully describe the frequency dependent Faraday interaction. This added complexity is 

addressed briefly in Chapter 12; however, for most of this study of travelling wave fiber 

current sensors, the coil is taken to be coaxial with the conductor. Two further 

simplifications are introduced into the model: the fiber helix consists of N complete turns 

with a constant pitch, xo and the coax line dielectric is free of magnetic materials, pr = 1. 

Using these assumptions, the angle w is no longer time dependent, 

/Coaxial Line 

/ Dielectric 
Singlemode @ r ,  e , )  Fiber Coil 

L 
Fig. 8-1. A travelling wave fiber current sensor constructed of a helical singlemode fiber 
coil immersed in the dielectric of a coaxial transmission line. 
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NXO cosy/ = - , 
L 

and 
N x d  

L 
s inv  = - , 

(8-la) 

(8- 1 b) 

where L is the total fiber length in the coil helix and d is the mean diameter of the coil 

measured radially from the conductor axis. Substituting Eqs. (8-1) into Eq. (3-9) results 

in a general expression for the Faraday rotation of the simplified travelling wave sensor: 

In Eq. (8-2) z = (n/c)2nRN/siny, which differs from that for the planar coil by (sinW)-l. 

This factor arises because the helical coil requires a longer fiber length for a given coil 

diameter, d. The actual length of the fiber is given by 

L = NJ(nd)2 + xi , (8-3) 

which when substituted into Eq. (8-2) results in a final integral expression for the 

Faraday response: 

dt . (8-4) 

If the material relative permittivity is considered constant (independent of 
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frequency), Eq. (8-4) can be solved in manner similar to Eq. (5-1) for the centered, 

circular (and planar) coil. The solution becomes 

where 

(8-5a) 

(8-Sb) 

At the low frequencies, o + 0, < becomes zero and Eq. (8-5a) reduces to Eq. (2-3) as 

expected. If the coil pitch, xo, becomes small, the contribution from the second term in 

the parenthesis of Eq. (8-5b) is diminished. If xo = 0, then Eq. (8-5a) is identical to Eq. 

(5-3) for the planar coil. The relative magnitude of the Faraday response in Eqs. (8-5) 

has a form similar to Eq. (5-4): 

The 3 dB bandwidth occurs when 6 = 42 which leads to [60] 

AB = 
x2n N x o  

(8-7) 

The travelling wave sensor bandwidth now shows a dependence on the coaxial line 

relative permittivity and the fiber coil diameter-to-pitch ratio, d/x, . 
The bracketed factor in Eq. (8-7) can be equal to zero, which theoretically gives 
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an infinite bandwidth. This condition arises from perfect phase matching between the 

two interacting electromagnetic signals. When Eq. (8-6) for the travelling wave coil 

configuration is compared to Eq. (5-4) for the planar coil geometry (the baseline 

configuration), an enhancement factor equivalent to 

1 

1 - -  
F =  

Vf ' 

vPh 

is extracted [62] .  The travelling wave enhancement is determined by the relative phasing 

between the light in the fiber, vf = (c/n)cosy (in the direction of k) and the velocity of the 

TEM wave, vph, as given by Eq. (3-6). When the relative phase velocities are identical, 

the enhancement is infinite. 

The relative magnitude of the Faraday rotation from Eq. (8-6) is plotted versus 

the normalized frequency, 0'1/2, in Fig. 8-2. Also plotted is a reference curve taken from 

Eq. (5-4). In the example in Fig. 8-2, a travelling wave enhancement of slightly larger 

than two is used for illustration. 

The Bandwidth Enhancement Factor 

A bandwidth enhancement factor (BEF) is determined by the ratio of the 

travelling wave sensor bandwidth to the planar coil bandwidth: 

AE3 (travelling wave) BEF = 
AB (planar) (8-9) 

Upon substitution of Eqs. (8-7) and (5-8) [60], 
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(8-10) 

In defining the BEF, the number of fiber turns and the coil diameter remain fixed for the 

two coils being compared. This means the low frequency Faraday sensitivity is 

unchanged from that described by Eq. (2-3). Thus, the BEF can be used as a figure of 

merit to give a quantifiable estimate of sensor performance improvement for travelling 

wave configurations. The BEF can also be used directly to compute the increase in the 

sensitivity-bandwidth product over that for the planar coil given in Eq. (5-10). 

1 1  
\ I  
V 
I I 1 I I I 1 

0 TI 27r 37r 47r 

Fig. 8-2. A typical Faraday response curve for a travelling wave fiber current sensor. 
The dotted reference curve is the response for an equivalent sensor coil with coplanar 
turns. 
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Equation (8-10) is very similar to the enhancement factor given by Eq. (8-8) 

when the respective velocities are substituted. The only difference is the added fiber 

length, 

AL = /- , (8- 1 1) 

that must be used in the helical coil in order to maintain a fixed diameter. Equation (8-8) 

is a generic expression for any travelling wave structure that accounts only for the 

relative phase velocity mismatches; Eq. (8- 10) is specific to this fiber configuration. 

The BEF is strongly dependent on the diameter-to-pitch ratio of the travelling 

wave fiber sensor coil and the relative permittivity of the slow-wave structure (the 

coaxial line). Figure 8-3 is a plot of the BEF, Eq. (8-lo), for several values of E, using 

d/x, as the independent variable. The fiber refractive index is assumed to have a nominal 

value of 1.46. For any E, a value of d/x, exists for which a maximum BEF occurs. If 

E, > n2, the maximum BEF approaches infinity. This complete phase matching condition 

(the travelling wave condition) occurs when the bracketed factor in Eq. (8-10) equals 

zero, or when 

(8-12) 

In Fig. 8-4, the values of E, and d/x, are plotted for which the travelling wave condition, 

Eq. (8-12) are met. It is obvious from Fig. 8-4 that slow-wave structures with larger 

relative permittivities are needed if the fiber helix has a small pitch. 

In Fig. 8-3, if E, e n2, the maximum BEF remains finite. For E, = 2, the BEF 

attains a peak value of - 4.0 at d/x, = 0.083; and for E, = 1, an air or vacuum dielectric, 

the BEF peaks at 1.37 when d/x ,  = 0.33. Thus, merely expanding the fiber coil into a 
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Fig. 8-3. The magnitude of the bandwidth enhancement factor as a function of the 
travelling wave coil diameter-to-pitch ratio. Curves are plotted for a wide range of 
relative permittivity values. 

I I I I , 1 1 1 ’  

~ ,=40  

- 

- 

helix does not provide much improvement in the sensor bandwidth. The propagation of 

the magnetic wave must also be slowed, preferably by using a dielectric with a large 

relative permittivity. 

Two other features are noted in the curves in Fig. 8-3. As d/x, + 00, or the coil 

pitch becomes small, the BEF approaches one for all values of E, (no enhancement occurs 

as expected). But as d/xo -+ 0 (xo -+ 00, infinite pitch), the BEF approaches zero for all 

E,. This feature results from the chosen definition for the BEF. If the coil diameter must 

remain constant, then as xo increases so does the total fiber length according to Q. (8-3). 

Eventually, the transit time of the light through this fiber length becomes prohibitively 

long and the bandwidth for the sensor decreases to zero. In order to keep the travelling 
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Diameter- t o  -pitch, d/x, 

Fig. 8-4. A plot of the relative permittivity of the dielectric medium required for 
maximum Faraday response bandwidth versus the sensing fiber diameter-to-pitch ratio. 
For the ideal travelling wave sensor with E, > n*, the theoretical maximum bandwidth 
approaches infinity. 

wave sensor at a practical length and yet produce as large a BEF as possible, emphasis is 

again placed on using the high relative permittivity materials. 
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CHAPTER 9 

TRAVELLING WAVE TRANSMISSION CELLS 

The travelling wave fiber current sensor shown in Fig. 8-1 was implemented 

using coaxial transmission cells with helical fiber coils mounted in the cell working 

volume [34]. Two basic cell configurations were used: one with an air dielectric, the 

other with liquid dielectrics of varying relative permittivity. The airline provided a 

baseline measurement for Faraday current sensor response when only a helically-shaped 

coil was used. Liquids were chosen as coaxial line dielectrics for the second 

configuration because they have large E,, they are readily available in a wide range of 

permittivities, and they can easily assume the shape of the cell interior and fill the large 

volumes required. 

The fiber coils were constructed from low birefringence singlemode fiber with an 

80 pm cladding diameter. Fibers were twisted at a rate of -30 turndmeter and wound on 

3 cm diameter mandrels. The selected twist rate was adequate for the circular 

birefringence bias to overcome the bend-induced birefringence at the chosen coil 

diameter. Faraday responses then could be measured directly from relative changes in 

the light intensity as described in Chapter 4. The coil diameter was held constant for all 

test designs, but the pitch of the helical coil varied between 1.5 and 3.0 cm; several 

values of d/x, were used. In some configurations, the coils were quite long; however, the 

total number of turns was limited so that coils never exceeded 45 cm in axial length. The 

number of coil turns varied from 10 to 20. 

A single coaxial cell outer structure was used for all travelling wave experiments. 

The outer conductor diameter was 5.75 cm. In order to maintain a 50 R nominal 

impedance on the transmission line, the inner conductor diameter varied according to Eq. 

(A-1 1) for the appropriate value of q. Properties of the travelling wave transmission 

cells - SWR, impedance and transmission magnitude - were determined using ANA 
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measurements and Eqs. (A-25) and (A-26). These properties were important in assessing 

the useful operating frequency range for the liquid cells and necessary in developing 

accurate response models that accounted for all the liquid parameters. 

The transmission cells were positioned as shown in the experimental arrangement 

of Fig. 4-1. A photograph of the bench-top hardware for this configuration is shown in 

Fig. 9-1. All remaining instrumentation and procedures for the measurements of the 

travelling wave current sensor response were as outlined in Chapter 4. 

Fig. 9-1. 
the travelling wave fiber current sensors. 

A bench-top photograph of the experimental hardware used during testing of 
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Airline Cell 

The coaxial airline travelling wave test cell is described as Cell #2 in Table A-1 

of Appendix A. The cell center conductor diameter is 2.49 cm (for 50 S2 characteristic 

impedance), and the working volume length is 45.7 cm. The fiber sensor coil consisted 

of 10 turns wound on a polyurethane foam mandrel of 3.0 cm diameter. This coil 

support then fit directly over the cell center conductor. A view of the disassembled 

airline is shown in the photograph, Fig. 9-2. Tapered end sections of both inner and 

outer conductors can be seen at the left of the photo. The ends of the fiber coil are 

secured to the foam mandrel by first sewing several thread loops around the fiber and 

through the foam; then a dab of UV-curing epoxy is hardened at the fiber-thread 

interface. The twist is locked into the fiber turns, and the coil leads are allowed to dangle 

(untwisted) so they may be fed through the wall of the cell outer conductor section. 

The electromagnetic performance characteristics of the airline travelling wave 

cell were quite good. SWR and impedance magnitude of the cell are plotted versus 

frequency in Fig. 9-3. The cell SWR never exceeds 1.23 and the impedance varies 

Fig. 9-2. Photograph of the disassembled travelling wave airline cell. A 10-turn, helical 
fiber coil on a foam mandrel is located at the bottom of the photo. 
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Fig. 9-3. 
wave airline cell with the optical fiber sensor inside. 

The measured SWR (a) and the impedance magnitude (b) of the travelling 
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between 42.5 and 52 R. Frequency spacing between the larger oscillations in both the 

SWR and the impedance is approximately 260 MHz. This corresponds to resonant 

reflections at the transitions from the RF connectors into the cell air space. The fiber coil 

and foam mandrel do not create noticeable perturbations in the electromagnetic 

characteristics. The useful operating frequency range of the airline cell extends beyond 

2.3 GHz, which is the cutoff frequency for cell higher order modes. Such a high test 

frequency, however, is not needed since the fiber current sensor Faraday response is 

limited to much lower values. 

Liquid Cells 

Many organic and inorganic liquids with large relative permittivities [67], E, > 10, 

were considered during design of the travelling wave sensors. Three - 1-propanol, 

methanol, and water - were chosen for testing because they spanned a wide range of E, 

values and were relatively nonhazardous in the small volumes used. The static or low 

frequency relative permittivity of these three liquids is 20.1, 32.63, and 78.54, 

respectively, at 25OC. One disadvantage of using liquid dielectrics in the travelling wave 

cell is the temperature dependence of E,. Selected values of the relative permittivity for 

the three test liquids are given in Tables 9-1 and 9-2. Near ambient temperature in the 

laboratory, values for E, vary only slightly. Thus, no temperature control was deemed 

necessary, but a monitor was provided to indicate liquid temperature. This sensor, a 

Fluoropticm thermometer [68] from Luxtron, is seen in Fig. 9-1. 

Figure 9-4 is a close-up view of the fully assembled liquid travelling wave cell. 

(This cell is also seen in the experimental setup of Fig. 9-1.) Inlet and vent ports for 

liquid filling are visible on the top of the cell. Exit holes for the fiber sensor required 

sealing to prevent liquid leakage. The optical fiber test coil is supported in the liquid 

medium by a teflon tube. A helical groove with a semicircular cross section was 

machined in the outside surface of the tube as a guide for the twisted fiber. The fiber 
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Table 9-1. 

Relative Permittivity of the Test Liquids at Selected Temperatures [67]. 

Temperature ("C) 

-1 13 

-80 

-34 

-20 

20 

25 

200 

1-Propanol 

- 
38.0 

29.0 

- 

20.1 

Methanol 

64.0 

54.0 

- 

40.0 

33.62 

32.63 

- 

Water 

- 
- 
- 

- 
80.37 

78.54 

34.5 

was anchored to the mandrel using the same thread-and-epoxy technique as used for the 

airline coil. Several mandrel tubes were used, each with a different helical pitch. The 

teflon mandrel was aligned coaxially in the cell using several teflon support rings. These 

rings are seen in the end-view photograph of the opened liquid cell in Fig. 9-5a. The 

support rings also aligned the center conductor coaxially in the cell. Because of the large 

relative permittivity of the liquid, the center conductor diameter required to maintain a 

50 R characteristic impedance in the cell was often very small. Thus, external support 

was needed. 

Barely visible in Fig. 9-5a is the optical fiber spooling off the end of the teflon 

mandrel and exiting the cell. This section of fiber was untwisted, and care was taken to 

not stress it during cell assembly. Figure 9-5b shows the disassembled travelling wave 

cell. The O-rings used to seal the cell outer conductor components are visible on the two 

endcap sections. Also, short teflon extension tubes are seen in the endcaps; these help 
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Temperature ("C) 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

100 

Table 9-2. 

Relative Permittivity of Water. 

E [Ref. 691 

87.74 

85.76 

83.83 

8 1.95 

80.10 

78.30 

76.55 

74.83 

73.15 

71.51 

69.9 1 

68.34 

66.81 

65.32 

63.86 

62.43 

61.03 

59.66 

58.32 

57.01 

55.72 

e [Ref. 701 

87.90 

85.90 

83.95 

82.04 

80.18 

78.36 

76.58 

74.85 

73.15 

71.50 

69.88 

68.30 

66.76 

65.25 

63.78 

62.34 

60.93 

59.55 

58.20 

56.88 

55.58 
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maintain radial dielectric continuity throughout the entire length of the cell interior. 

The presence of the teflon support structures inside the cells often created 

numerous points for reflection of the electromagnetic waves. Teflon was chosen as a 

support material because it is impervious to all liquids considered as potential dielectric 

materials. However, the teflon has a relative permittivity of 2.0, which differs 

significantly from that of any of the liquids. Impedance mismatches could occur at many 

Fig. 9-4. Photograph of the liquid travelling wave transmission cell. Optical fiber leads 
exit the cell through sealed holes in the cell outer conductor. Fill and vent holes for the 
liquid are located on top of the cell. 
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Fig. 9-5. 

showing the inside of the cell, and (b) the fully disassembled cell. 
Photographs of the liquid travelling wave transmission cell. (a) End view 
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locations inside the cell. Also, the geometric transition from the RF connectors to the 

inside of the cell was difficult to design considering the large permittivity steps, the 

varying size of the small diameter center conductor, and the presence of the support 

structures. As a result, the SWR of many of the cell configurations was not good. 

The measured SWRs for a propanol-filled cell and a water-fded cell are shown in 

Figs. 9-6 and 9-7. For the propanol cell, the SWR never exceeds 1.31 below 500 MHz. 

These low-level reflections are attributed to the good impedance matching achieved in 

R F L  SWR 100 rn / REF 1 Zn 1.3123 

START .300 000 M H z  STOP 500.000 000 MHz 

c 

Fig. 9-6. The SWR for the propanol-filled transmission test cell for frequencies up to 
500 MHz. 
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the cell when using a relatively low E, liquid material. The impedance magnitudes 

corresponding to data in Fig. 9-6 vary between 38 R and 52 R, which represents a 

maximum deviation of only 1.2 dB from the nominally 50 R design. 

In contrast, the SWR for the water cell, Fig. 9-7, is as high as 15 for frequencies 

below 1 GHz. This cell is burdened with large reflections due to the high E, of the water. 

Corresponding impedance magnitudes vary from -3.5 R to -109 R, a 11 dB deviation 

from 50 R. Some configurations of the water cells had better electromagnetic 

START -300 000 MHz STOP 1 000.000 000 MHz 

Fig. 9-7. 
GHz. 

The SWR for the water-filled transmission test cell for frequencies up to 1 
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characteristics than those shown in Fig 9-7, but all had SWRs greater than 5.0. Even 

with the large mismatches, however, the water-filled cell proved useful in travelling 

wave current sensor testing. It is postulated that energy, once coupled into the cell, 

propagates with a wave impedance that closely approximates that of a TEM wave and 

with a well-established phase velocity that can be estimated by Eq. (3-6). Further details 

on the construction and characterization of the liquid travelling wave cells are found in 

Ref. 34. 
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CHAPTER 10 

EXTENDED MODELS FOR LIQUID CELL TRAVELLING WAVE SENSORS 

The theory for the travelling wave current sensor presented in Chapter 8 assumes 

all parameters of the fiber coil, the transmission cell, and the dielectric medium are ideal 

(i.e., they are independent of frequency). In reality, however, several factors contribute 

to perturbations of the basic travelling wave Faraday response, Eqs. (8-5). all which 

reduce the predicted bandwidth enhancement given by Eq. (8-10). Infinite bandwidths 

are certainly not possible, even under the best matching of parameters, but the 

perturbations do not preclude achieving large bandwidths in many practical devices. 

Five mechanisms have been identified that affect the Faraday response in the 

experimental travelling wave structures and limit the system bandwidth. First is the 

presence of the fiber coil leads. In the cell configurations discussed in the previous 

chapter, the fiber is allowed to spool off the end of the support mandrel and exit the cell 

through the outer conductor wall. In most cases the fiber leads do not conform to the 

prescribed helical pitch of the coil proper and merely increase in radial distance along a 

path that is perpendicular to the conductor. Thus, the leads do not "travel" like the 

remainder of the fiber and contribute to a minor bandwidth reduction. The deviation in 

response created by the fiber coil leads is discussed in detail in Appendix B for the planar 

coil configuration. Since the fiber leads used with the travelling wave coils do not differ 

significantly from those of the planar coil, the theory presented in Appendix B is 

adequate to describe all Faraday responses. Also, the Faraday response in the leads is 

independent of the value of E, because of the chosen configuration, and thus, both the 

airline and the liquid cell travelling wave sensor systems experience some bandwidth 

reductions. 

The second limiting mechanism is the modal structure of the coaxial transmission 

line. All response models, especially those for the travelling wave sensors, are based on 
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TEM wave propagation, and more importantly, on the magnetic field component being 

perpendicular to the direction of wave propagation. Higher order modes begin 

propagating in the cells at frequencies defined by Eq. (A-13) in Appendix A. This 

prediction assumes that an ideal dielectric is present in the coaxial waveguide. For the 

cell configurations described in Chapter 9, the onset of the higher order modes will occur 

at 2.32 GHz for E, = 1 (air dielectric), 517 MHz for E, = 20.1 (the static value for 

propanol at 25 "C), 406 MHz for E, = 32.6 (methanol), and 262 MHz for E, = 78.5 

(water). The first higher order mode in the ideal coaxial line is TE,,, which means the 

magnetic field will have a component in the direction of propagation - along the 

direction of the conducted current. This could enhance the Faraday response in the 

travelling wave coil at the higher frequencies since the light and field vectors might align 

more readily. But an exact mathematical description of this interaction is difficult since 

the contribution of both the TEM and the TE,, mode must be considered and each has a 

separate propagation constant that varies differently with the frequency. Consequently, 

the wave phase velocity varies with frequency, and this quantity is the determining factor 

in the degree of phase matching that occurs in the travelling wave sensor. As more 

higher order modes are added in the waveguide volume, the situation becomes even more 

complicated. Thus, operation of the travelling wave current sensors is targeted for a 

frequency range in which a single dominant waveguide mode exists, limiting the useful 

bandwidth of the system. 

A third perturbation arises from the presence of the teflon fiber support mandrel 

used in the liquid cell. The relative permittivity of the teflon is - 2.0 which is much 

smaller than that of any of the liquids. This modifies the wave propagation in the coaxial 

line and produces an effective relative permittivity (at low frequencies) for the composite 

dielectric structure. The effective relative permittivity is smaller than the E, of the 

immersing liquid. The fourth mechanism is liquid dispersion and absorption. Polar 

molecules that necessarily give rise to the large relative permittivities must reorient in the 
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oscillating fields. At higher frequencies the liquid molecule cannot keep up with the 

changing field polarization, resulting in absorption of the RF power and a subsequent 

loss in current detection sensitivity. Finally, a fifth mechanism is described by a 

combination of those effects just discussed for the second, third and fourth mechanisms 

above. This response perturbation is due to the waveguide modal structure in multilayer, 

dispersive dielectric media. 

A detailed description of these last three mechanisms is warranted given their 

significant affect on the Faraday response of the travelling wave fiber current sensor. 

Each is treated separately in the following sections. A complete computational model for 

predicting responses of the liquid travelling wave sensors is offered at the end of this 

chapter. 

Effective Relative Permit tivi ties 

The relative permittivity of the dielectric medium in the coaxial transmission line 

establishes the phase velocity of the propagating magnetic wave according to Eq. (3-6). 

Consequently, the response, Eqs. (8-5), and the bandwidth, Eq. (8-7), of the travelling 

wave fiber current sensor are dependent on the value of q. In all of the previous 

theoretical developments, it is assumed that E, is single-valued and equal to that of the 

dielectric medium, here, the liquid. However, in the liquid cell configurations, it is 

necessary to support the helical fiber coil at a given diameter and position relative to the 

coax center conductor. When the teflon mandrel tube is submersed in the liquid, the field 

spatial distribution is perturbed from that of the liquid alone, and the EM properties of 

the cell are changed. The propagating wave in the transmission line then has a phase 

velocity determined by an apparent or effective relative permittivity which is 

intermediate to the liquid (E, > 20) and the mandrel (E, - 2). For the purpose of 

computing cell geometric parameters and estimating sensor responses, this effective 

relative permittivity, E ~ ~ ~ ,  is treated as a single-valued quantity. 
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With the fiber mandrel present, the lowest-order mode in the coaxial cell is no 

longer TEM, but TM,,. This follows from the waveguide modal solutions for the 

multilayer dielectric which is treated later in this chapter. In the static or low frequency 

case, however, the TM,, mode can be considered "quasi-TEM," and the electric field has 

a l/p dependency in the cell volume between the conductors. The derivation of an 

effective relative permittivity for a coaxial cell with two dielectric media, one submersed 

in the other, is performed in detail in Appendix C. The solution is given as 

= E l [ l  + ( 2 - 1 )  In(%) ] -l , 

In (%) &eff (10-1) 

where E, is the relative permittivity of the liquid, % is the relative permittivity of the 

mandrel material (the teflon), rl and r2 are the inner and outer radii of the mandrel tube, 

and 'a' and 'b' are the center and outer conductor radii of the coaxial line. 

Fixed values were designed for three of the radii in the travelling wave liquid 

cell: rl = 0.475 in. (1.20 cm), r2 = 0.625 in. (1.59 cm), and b = 1.13 in. (2.87 cm). The 

value of 'a' varies with each liquid. When the fixed radii values and the relative 

permittivity of the teflon mandrel are substituted into Eq. (10-1), the effective relative 

permittivity becomes 

(1 0-2) 

where 'a' has the units of inches. Figure 10-1 is a plot of Eq. (10-2) for each of the three 

test liquids used in the cell and with the cell center conductor diameter, 2a, as the 

abscissa. A wide range of values for 2a are plotted. For the small conductor sizes, the 
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effective relative permittivity is greatest, but it is still significantly less than that of the 

liquid alone. For large conductor sizes, the three curves begin to converge, attaining 

values of E , ~  between 5 and 6 at the maximum center conductor diameter, a = rl. 

The large effect of the teflon fiber mandrel tube on the relative permittivity of the 

liquid cell can be interpreted by examining the boundary conditions at the dielectric 

interfaces. From Eq. (C-5), E, = (q/E2)E1 at both rl and r,. This requires the electric 

field in the volume occupied by the mandrel to be at least 10 times larger (since E, > 20 

and ~2 = 2) than the field in the equivalent volume occupied by the liquid alone. If the 

relative permittivity of the fiber support material more closely matched that of the 
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Fig. 10-1. The static, or low frequency, effective relative permittivity versus center 
conductor diameter for the three liquid travelling wave test cells. The dashed curve 
represents the appropriate E,, for a coaxial cell with a fixed 50 R characteristic 
impedance. Open circles are parameters for actual experimental cell configurations. 
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liquids, the perturbation would not be so great. Fortunately, a second boundary 

condition, H,, = H,,, requires the magnetic field component to be uniformly continuous 

along the cell radius between the two conductors, extending through the teflon. Since the 

desired current measurements depend only on the interaction of this magnetic field 

component with the light in the fiber, no deviations will occur in the low frequency 

Faraday response magnitude even with the fiber at the outer surface of the support 

mandrel. Thus, the properties of the travelling wave sensor must be adjusted to account 

only for the faster wave phase velocity created by changes in the relative permittivity. 

The low frequency characteristic impedance, Z,, of the liquid travelling wave cell 

can be computed by substituting E,, from Eq. (10-1) for E, in Eq. (A- 11): 

In($) . (1 0-3) 

The relationship between impedance and relative conductor radii is now much more 

complicated. If all the cell geometric parameters and the material relative permittivities 

are known, the characteristic impedance can be computed. However, it is often desirable 

to identify an impedance, then design the coaxial cell for given dielectric materials. 

Rearranging Eq. (10-3) gives an expression for the ratio of the conductor radii as a 

function of the remaining parameters, 

In(.!!) = i[l - ?)In[:) + ,/I . (10-4) 

For a cell matched to 50 SZ and with the teflon mandrel and cell outer conductor 
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geometries as given previously, Eq. (10-4) reduces to 

a = 1.13 x exp 0.14 (0.5&, - 1) - ,/ 0.02 (0.5&, - 1)2 + 0.7&, . (10-5) [ 1 
This expression can be used to uniquely determine the size of the center conductor 

required for a 50 R test cell for a given liquid. For the three test liquids selected for use 

in the travelling wave sensors, the center conductor diameters are 0.15 in. (0.39 cm) for 

propanol, 0.1 in. (0.26 cm) for methanol, and 0.05 in. (0.13 cm) for water. If these 

values are appropriately substituted into Eq. (10-2), the effective relative permittivities 

for the 50 R cells are 10.5 for the propanol cell, 13.9 for the methanol cell, and 21.1 for 

the water cell. 

In Fig. 10-1, a dashed curve is plotted that represents the values of E,, as a 

function of 2a for all possible liquids used in our 50 R cell. This curve is generated by 

first selecting a liquid relative permittivity, E,, and using Eq. (10-5) to find 'a'. The 

values for E, and 'a' are then substituted into Eq. (10-2) to find a unique cefP Liquid 

relative permittivities cover the continuum from E, = 1 to 150. These extreme values for 

E ,  are shown as the endpoints for the dashed curve in Fig. 10-1. The intersections of the 

dashed curve with the three solid curves identify the values of the effective relative 

permittivity for the 50 R cells for the selected test liquids. These three values were 

stated in the preceding paragraph. Also plotted in Fig. 10-1 (as the open circles) are the 

parameters of the actual travelling wave sensor experimental configurations. As can be 

seen, for each test liquid a configuration near 50 l2 characteristic impedance was used. 

Other cell configurations with different impedances were also implemented. 

Equation (10-1) can also be used to compute the effective relative permittivity of 

the dielectric in the airline travelling wave test cell. This cell used a polyurethane foam 

(E, e 1.2) mandrel to support the helical optical fiber. As might be expected, the foam 
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represents only a minimal perturbation on the cell dielectric properties: Eeff = 0.98 if Q = 

1.1, and E,, = 0.96 if Q is as large as 1.2. Since the transmission line characteristic 

impedance follows as (Eeff)-%, insignificant changes in the wave properties occur due to 

the presence of the foam fiber mandrel. 

Liauid Dimemion 

One of the greatest concerns with liquid as a dielectric medium is the dispersion 

that occurs at high frequencies. The EM wave propagating in the medium causes 

oscillations of the liquid molecule. At high frequencies, these molecules cannot reorient 

fast enough to move synchronously with the field. A phase delay occurs between the 

wave and the molecule resulting in apparent deviations of the real component of the 

relative permittivity and significant increases in the imaginary component. The latter 

effect gives rise to dielectric absorption. The complex relative permittivity is expressed 

by Eq. (A-16). A Debye relaxation model is used to describe the real and imaginary 

components in terms of the molecular properties [7 11: 

(1 0-6) 

where a, is the static polarizability of the molecule, N, is the molecular density, and T, 

is the molecular reorientation time. TR is closely related to the material viscosity and the 

size of the molecule [71]. Small liquid molecules with low viscosity, such as water, will 

produce large absorption only at the highest frequencies; however, dielectrics with large 

molecules will exhibit significant dispersion. 

Figure 10-2 shows the frequency characteristics of the real (E') and imaginary (E") 

parts of Eq. (10-6) for a typical dielectric medium. When the frequency is equal to InR, 
the imaginary component is maximum (indicating peak absorption) and the real 
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Fig. 10-2. 
dispersive medium. 

The real and imaginary components of the relative permittivity for a 

component is reduced to approximately one-half the difference between the low 

frequency and the high frequency relative permittivity. As an example, the peak 

absorption for water occurs near 16 GHz at 25 "C which equates to a molecular 

reorientation time of T, - lo-" seconds [72]. The values of the reorientation time for the 

other two liquids used in the experimental travelling wave sensor cells are approximately 

3.6 x sec for propanol and 7 x 10" sec for methanol. These two liquids have much 

larger molecules than water, consequently, the longer reorientation times. In many 

materials, several higher frequency absorption bands will also occur. Each of these will 

have relative permittivity characteristics as shown in Fig. 10-2, only with progressively 

lower starting values for E'. For the purpose of describing dispersion in the liquid 

dielectrics used in this study, however, only the first absorption is of interest. 

The static or low frequency value for the relative permittivity, E,, is found from 
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Eq. (10-6) when o = 0: 

E, = 1 + 41~01,Nd . 

Static values for materials are usually those published 

(10-7) 

in the handbook tables. If a 

constant parameter, K, is defined as K = 4na,Nd, then K = E, - 1. The two material 

dielectric parameters, K and T,, are all that is needed to fully describe the frequency 

dependence of the relative permittivity given by Eq. (10-6). 

The amplitude of the propagating EM wave in the coaxial transmission line is 

given by 

(1 0-8) 

where A, is the initial wave amplitude, p is the waveguide propagation constant, and z is 

the direction of propagation. The attenuation or absorption coefficient is determined 

from the real component of the exponential factor, or 

= " I m ( J E z q F )  . (1 0-9) 
c 

If attenuation is small, the dielectric has  a loss that is described by Eq. (A-18). For the 

liquids at higher frequencies, larger attenuation occurs and Eq. (10-9) must be used 

directly to determine losses. Figure 10-3a shows the transmission magnitude measured 

for the travelling wave sensor cell filled with propanol. The dashed curve is a prediction 

of the frequency-dependent absorption using the waveguide model discussed in the 

following section of this chapter. Absorption is quite large in this configuration, 

approximately 30 dB at 500 MHz. The Faraday response sensitivity for the travelling 
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Fig. 10-3. The transmission magnitude (a) and phase angle (b) for the propanol-filled 
liquid test cell used as a travelling wave sensor. The dashed curve in (a) is a computation 
of the cell attenuation produced by absorption in the propanol with an estimated 
molecular reorientation time of 3.6 x lo-'' sec. In (b) the liquid dispersion creates a 
noticeable phase lag. 
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wave sensor is significantly diminished under these large attenuation conditions. In fact, 

it is determined that only - 20 dB of loss can be accommodated before measurement 

signal-to-noise ratios become too small. This limitation then establishes a higher 

frequency bound on each travelling wave sensor configuration. For the propanol-filled 

cell, this upper frequency limit is approximately 380 MHz. For the methanol cell, the 

limit is - 650 MHz, and for the water cell, - 825 MHz. Because of other limitations in 

the Faraday current sensor response, none of the cells could be used up to this absorption 

frequency bound. 

Absorption of the RF power by the liquid dielectrics limits the maximum energy 

that can be injected into the transmission cells. The heat generated by the absorbed 

power elevates the liquid temperature, thus lowering the relative permittivity (see Tables 

9-1 and 9-2). No attempts were made during experimentation to control the liquid 

temperature, but a monitor was used and the temperature was continuously recorded. 

The controller for the fiber optic temperature sensor, a Luxtron Model lOOOA, can be 

seen in the lower left of the photo in Fig. 9-1. Liquid temperatures were not allowed to 

deviate greater than 5 "C during all tests. This ensured a reasonably stable relative 

permittivity and cell impedance, and negated the need for any corrections to the 

measured sensor responses. 

In addition to absorption, dispersion in the liquid relative permittivity also 

perturbs the waveguide propagation parameter. At the higher frequencies, changes in 

both E' and E" produce deviations in the imaginary component of the exponential factor in 

Eq. (10-8). This factor is critical in establishing the wave phase velocity in the travelling 

wave sensor configuration. In liquids that exhibit large absorption, large increases in 

phase velocity also occur. In Fig. 10-3b, the transmission phase angle for the propanol- 

filled cell is plotted. A noticeable phase lag is observed, which results from the relative 

permittivity steadily decreasing as the frequency increases. This indicates that the EM 

wave in the cell is gaining speed with frequency. In a current sensing system this leads 
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to a gradually increasing phase mismatch with the light in the optical fiber. Faraday 

response will obviously decrease at the higher frequencies. 

The Liauid Coaxial Waverruide 

An exact determination of the electromagnetic properties for the liquid travelling 

wave sensor cells requires a detailed analysis of the actual and complete waveguide. 

This analysis must include the relative permittivity perturbations caused by the presence 

of the fiber mandrel tube, the dispersion in the liquid dielectric, and the waveguide 

dispersion created by modes at the higher frequencies. The general problem that must be 

solved is finding the modal structure in the transmission line dielectric volume for a 

multilayer coaxial dielectric with complex relative permittivities. Maxwell's equations 

(the wave equations) are solved subject to the appropriate coaxial boundary conditions. 

From these solutions, a complex relative permittivity is determined that can be 

substituted into Eq. (8-4) to give an expression for the frequency-dependent Faraday 

response in the travelling wave current sensor. 

A complete, detailed solution to the general waveguide problem is quite involved; 

it must assume that all spatially-orthogonal components of the magnetic and electric field 

exist inside the transmission line dielectric volume. The approach of reducing the 

computations to TM and TE modes as taken for the ideal coaxial line (see Appendix A) 

may not be appropriate. Coupled modes must initially be considered. Fortunately, the 

implementation of the travelling wave sensors only requires knowledge of the lowest 

order mode propagating in the cells. This can be achieved by simplifying the problem 

from the outset: assume a limited modal structure and a limited frequency range of 

operation. Previously, the lowest order mode in the liquid-filled cells was assumed to 

have quasi-TEM characteristics. Then, a reasonable assumption is that this mode 

possesses azimuthal symmetry. With no 0 dependencies, the field components in the 

multilayer dielectric become uncoupled (transverse field components are no longer a 
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superposition of E, and H 3  [73], and the modal problem can again be simplified 

mathematically into TE and TM groupings. The problem is further simplified by 

identifying the approximate cutoff frequency of the first higher order azimuthally 

symmetric mode, then bounding sensor operation to the assumed single mode region 

below this frequency. As verified by the experimental data, the above assumptions have 

proved quite accurate in treatment of the travelling wave fiber sensor response. 

The eigenvalue equations for the TE,, and TM,, modes in the liquid-filled 

transmission cells are developed in Appendix D. Modal solutions to these equations are 

approached, and eventually displayed, from the perspective of an effective relative 

permittivity, E , ~ ~  The effective relative permittivity is related to the waveguide 

propagation constant through the expression 

(10-10) 

It is more common to determine the modes in the coaxial transmission line by simply 

finding as a function of frequency. Such a treatment is used in Appendix A. However, 

the relative permittivity representation continues from earlier discussions of the travelling 

wave sensor systems and allows for greater insight into dielectric properties, especially 

dispersion. The use of an E,, in the mathematical treatment is consistent with other 

waveguide properties. 

Throughout the waveguide modal analysis, it is assumed that computed values for 

E,, will be representative of a homogenous dielectric medium between the conductors in 

the coaxial line. Then the effective relative permittivity can be used to estimate 

impedances, propagating-wave phase velocities, and ultimately, the travelling wave 

sensor responses. In the waveguide computations, the liquid relative permittivity is 

treated as complex, thus the resulting E,, is complex. This allows for treatment of both 

the wave dispersion and attenuation. 
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An iterative computer algorithm [34] was used to compute the solutions to the 

modal eigenvalue equations, Eq. (D-15) for the TM,, modes and Eq. (D-27) for the TE,, 

modes. The code initially estimates a value for E,, (complex components where 

appropriate) at a given frequency and then computes the waveguide propagation 

constant, p, using Eq. (10-10). The complex value of k, (from Eqs. (A-4) and (10-6)) for 

the liquid dielectric is combined with p to determine the parameter u, from Eq. (D-2). 

Similarly, u2 is determined from p and k,, for a nondispersive relative permittivity for the 

teflon fiber mandrel. Arguments for the Bessel functions are then generated from the 

geometric dimensions, and trial solutions to the eigenvalue equations are computed. 

Iterations of E,, occur until satisfactory solutions are found. Because u, and u2 can 

assume any complex value, it is necessary to utilize Bessel function routines that allow 

complex arguments. These functions were provided by D. E. Amos as a complete 

Fortran subroutine package [74]. 

Modes within the multilayer dielectric transmission line are first identified by 

treating the liquids as lossless or nondispersive. Then the effective relative permittivities 

introduced into Eqs. (10-10) and (A-4) are real only. The lowest order mode for all the 

multilayer dielectric configurations is TW,. A TEM mode cannot exist. Guided modes 

in the cell require that ~2 I Eerr e E, for propagation to occur; modes fall below cutoff if 

Eerr < E,. This implies the phase velocity of the propagating wave is faster than the speed 

of light in the liquid medium. Such anomalous phase velocities are not unusual in guided 

wave structures. The maximum phase velocity in the multilayer dielectric is limited by 

the speed of light in the teflon. 

Figure 10-4 is a plot of E,, versus frequency for several TM and TE modes in a 

lossless coaxial transmission cell filled with water. At zero frequency, the static value of 

E,, for the TM,, mode agrees exactly with that determined by Eq. (10-2) from the theory 

developed in Appendix C. This validates the assumption that at low frequencies a quasi- 

TEM mode exists in the cell. In Fig. 10-4 the modal values for Eefr are bound by E, on 
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Fig. 10-4. The effective relative permittivity versus frequency for the azimuthally 
symmetric TM,, and TE,, modes in a multilayer dielectric coaxial waveguide containing 
water. Liquid dispersion is neglected. 

the high side and on the low side. The transmission cell becomes highly multimoded 

as the frequency approaches 1.5 GHz; several additional modes, that are not azimuthally 

symmetric, are expected to appear among the TM,, and TE,, modes at the higher 

frequencies. The first higher order azimuthally symmetric mode in Fig. 10-4 is the TE,, 

mode which begins propagating near 600 MHz. This cutoff establishes an approximate 

upper frequency bound for single mode operation in a water-frlled travelling wave cell. 

For travelling wave cells filled with propanol and methanol, the TE,, mode is also the 

first higher order mode in the multilayer dielectric waveguide assuming nondispersive 

liquids. The cutoff frequency for this mode is approximately 1220 MHz in the propanol 

cell and approximately 940 MHz in the methanol cell. 
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Portions of the lower frequency E,, for the TM,, mode in the lossless liquids 

propanol, methanol and water are plotted as the dotted reference curves in Figs. 10-5 

through 10-7. All three curves show a static value for E,, that agrees with the previously 

determined quasi-TEM calculations. Also, each curve shows a waveguide dispersion in 

the effective relative permittivity that is independent of the liquid dispersion. Below 500 

MHz, the waveguide dispersion for the propanol-filled cell is quite small (see Fig. 10-5), 

but values for the methanol cell and especially the water cell are quite significant (see 

Figs. 10-6 and 10-7). This waveguide dispersion arises from the large disparity between 

the relative permittivities of the liquid and the teflon tube, and subsequently, from the 

large disparity between the static E,, value and the static liquid E,. 
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Fig. 10-5. The complex effective relative permittivity versus frequency for the TM,, 
mode in a propanol-filled travelling wave transmission cell. The dotted reference curve 
is produced from the waveguide model neglecting liquid dispersion. 
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Fig. 10-6. The complex effective relative permittivity versus frequency for the TM,, 
mode in a methanol-filled travelling wave transmission cell. The dotted reference curve 
is produced from the waveguide model neglecting liquid dispersion. 

When liquid dispersion is included in the multilayer waveguide computations, 

complex solutions for E,, are generated. Only the TM,, mode is investigated for these 

dispersion calculations, and the frequency range is limited to 500 MHz for the propanol 

and methanol-filled cells and to 600 MHz for the water-filled cell. Cell absorption is 

included as part of the computations so that comparisons can be made directly to 

measured transmission (or loss) values. The molecular reorientation time, TR, is treated 

as a variable input parameter in the model. The complex relative permittivity of the 

liquid, Eq. (10-6), is then used to determine k and u for use in the waveguide eigenvalue 

equations. Differences between computed and measured attenuation values determine 

the correctness of the chosen value of TR. Figure 10-3a is one such comparison of cell 

transmission values for the propanol-filled coaxial line. The dashed curve in Fig. 10-3a 
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Fig. 10-7. The complex effective relative permittivity versus frequency for the TM,, 
mode in a water-filled travelling wave transmission cell. The dotted reference curve, 
which is almost hidden behind the solid curve, is produced from the waveguide model 
neglecting liquid dispersion. 

is generated by the multilayer waveguide model for T, = 3.6 x lo-'' sec. Good 

agreement with the network analyzer curve is observed, especially below 350 MHz. All 

estimated values for T, for the three test liquids were determined using this technique . 
The complex effective relative permittivities versus frequency for the three 

liquids are plotted in Figs. 10-5 through 10-7. The real and imaginary components of E,, 

are plotted as separate curves in each figure. In the propanol-filled cell, Fig. 10-5, 

absorption dominates. The imaginary part of E, increases rapidly with increasing 

frequency. The dispersion in the real part of is dramatic; liquid dispersion dominates 

the waveguide dispersion which is observed by comparing the solid and dotted curves in 

Fig. 10-5. In the methanol-filled cell, Fig. 10-6, the absorption is much smaller below 
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500 MHz. Waveguide dispersion is slightly greater than the liquid dispersion, as the real 

component of tzeH increases only 8% over the frequency range plotted. Because of the 

fast reorientation time for the water molecules, little liquid absorption occurs in this 

travelling wave cell. In Fig. 10-7, the real component of E& below 600 MHz is almost 

identical to Eeff computed for the lossless liquid (the dotted curve). Waveguide 

dispersion, however, produces more than a two-fold increase in the value of This 

leads to dramatic effects in the wave propagation characteristics for the water cell. 

The complex effective relative permittivity for each liquid is used to compute the 

wave impedance, using Eq. (A-9), for the TM,, mode in the multilayer dielectric 

transmission line. The TM,, mode is considered quasi-TEM at the low frequencies, 

which means that over some frequency range the wave impedance can be considered 

constant. For a pure TEM mode, the wave impedance does not change with frequency. 

Figure 10-8 shows a plot of the wave impedance magnitude for the travelling 

wave cells filled with the three test liquids. This parameter deviates with frequency in 

much the same manner as the real components of E , ~  plotted in Figs. 10-5 through 10-7. 

For methanol in the liquid-filled cell, Fig. 10-8 shows almost a constant wave impedance 

magnitude up to 500 MHz. Waveguide characteristics for this cell configuration are 

obviously quite good, indicating that travelling wave sensors using methanol as a liquid 

dielectric are useful up to the liquid absorption frequency limit, approximately 650 MHz. 

For propanol, the wave impedance magnitude shown in Fig. 10-8 deviates somewhat 

greater (and with opposite slope) than methanol with increasing frequency. If a 10% 

deviation from the static value is allowed in considering the frequency range over which 

the wave impedance is "essentially constant", then travelling wave sensors using 

propanol can operate to - 375 MHz. This frequency is about the same as that established 

by the liquid absorption limit. Waveguide dispersion in the water-filled cell creates large 

deviations in the wave impedance magnitude as seen in Fig. 10-8. Greater than 10% 

increases from the static q value are observed for frequencies above 315 MHz. This is 
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Fig. 10-8. The computed wave impedance magnitude for the TM,, mode in liquid-filled 
travelling wave cells for each of the three test liquids. 

easily the most dominant factor in configuring a single mode cell with water dielectric 

for use as a travelling wave sensor. 

The Complete Sensor Model 

The mechanisms discussed in the previous sections of this chapter significantly 

alter the electromagnetic properties of the travelling wave sensor cells and, thus, can have 

a profound effect on the response of the fiber sensor. The relative permittivity of the 

coaxial dielectric medium cannot be treated as a constant over all the frequencies of 

interest, and in many cases it deviates largely from its static value and its liquid-only 

value. Thus, only when dealing with ideal or severely confined configurations can the 

response function given by Eq. (8-5) be used to describe the frequency dependent 
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Faraday rotation. In all other cases, Eq. (8-4) must be used directly to predict responses. 

A suitable expression for the relative permittivity is identified and substituted for E, in 

Eq. (8-4); integration then follows to determine the response. For the most complete 

description, the liquid multilayer coaxial waveguide model discussed in the previous 

section and in Appendix D is used to generate a table of values for E , ~  at discrete 

frequencies for a given sensor cell configuration. These values are used in Eq. (8-4) to 

predict Faraday rotation at those discrete frequencies. In addition, the lead effects for the 

complete sensor system can be included by using the developments of Appendix B; the 

responses just described for the travelling wave coil proper are used as @,(a) in q. 
(B-17). Such a comprehensive model [75] is used to predict the behavior of all the 

travelling wave sensor experimental configurations and to evaluate responses for a 

broader range of possible sensors. 

Figure 10-9 shows model predictions for several different travelling wave sensor 

example configurations. In the examples, a coaxial transmission cell with methanol as 

the liquid dielectric is used. All fiber coils have 20 turns, a mean diameter of 3 cm, and a 

constant helical pitch of 2.4 cm. This fixes the diameter-to-pitch ratio at d x ,  = 1.25. 

Curve (a) in Fig. 10-9 is the relative magnitude of the Faraday rotation for the reference 

coil having planar turns (zero pitch). The bandwidth for this sensor coil is 48.3 MHz. 

Curve (b) is the sensor response for a travelling wave coil system with E, = 32.6. The 

helical fiber coil is assumed self supporting in the liquid medium, and the methanol is 

treated as nondispersive. Equation (8-6) describes the response for curve (b), which is 

very close to having the maximum bandwidth for a travelling wave sensor. The 

travelling wave condition, Eq. (8-12), for this dielectric is met when d/h = 1.20. A very 

wide bandwidth, 1.34 GHz, is predicted for this near-ideal sensor configuration. If liquid 

dispersion is considered in the model, the Faraday response is given by curve (c) in Fig. 

10-9. Absorption by the methanol damps the response at the higher frequencies; the 

bandwidth is reduced by a factor of 5.5 from that of curve (b). Liquid dispersion also 
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Fig. 10-9. Model predictions of the relative magnitude of the Faraday rotation for a 
travelling wave fiber current sensor with methanol as the dielectric. (a) Planar coil only; 
(b) helical coil, no dispersions; (c) helical coil, liquid dispersion only; (d) helical coil, E,, 
due to the teflon, no dispersions; (e) helical coil, E,,, waveguide dispersion only; and (Q 
helical coil, teff, liquid and waveguide dispersion, and fiber lead effects. 
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eliminates the nulls from the sensor response, meaning the magnitude never drops 

completely to zero. This is an argument for potential utilization of fiber sensors well 

beyond their 3 dB bandwidth or the expected cutoff frequency. 

In practical travelling wave systems, the presence of the fiber support mandrel 

was shown to perturb the transmission line relative permittivity. If this effect is 

considered in our example model, curve (d) in Fig. 10-9 results. In generating this 

response, a teflon support tube (E, = 2.0) having inner and outer diameters of 2.4 and 

3.18 cm was used, and the coaxial transmission cell had center and outer conductor 

diameters of 0.52 and 5.75 cm. These dimensions are exactly those used for all the 

experimental configurations in this study. An effective relative permittivity of 14.07 is 

computed for the methanol-teflon dielectric system. Once again, the liquid is assumed 

nondispersive in generating the response curve (d). The 3 dB bandwidth for this curve, 

computed using Eq. (8-7), is 127.9 MHz. 

In the lower half of Fig. 10-9, the perturbations in the Faraday response due to the 

addition of waveguide dispersion, liquid dispersion and lead effects are shown. Curve 

(e) adds the waveguide dispersion but treats the liquid medium as lossless. The E,, 

values from the dotted reference curve in Fig. 10-6 were used to generate this response. 

Since the effective relative permittivity of the methanol increases with frequency, the 

phase matching between the electromagnetic signals actually improves as the frequency 

increases. This leads to a slightly larger bandwidth for curve (e) when compared to 

curve (d) in Fig. 10-9. Significant increases in response are seen in the second lobe near 

500 MHz. This increased travelling wave performance is even more pronounced for 

other liquids, such as water, since the waveguide dispersion for the TM,, mode is much 

greater (see Fig. 10-7). 

All travelling wave sensor effects, including the fiber coil lead effects, were 

considered in generating the response curve ( f )  in Fig. 10-9. Leads are assumed to have 

a length defined in Appendix B by X = R and be oriented perpendicular to the planar 
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magnetic wave, having no travelling wave characteristics. This lead configuration 

describes precisely that used in the experimental sensor cells. Both absorption in the 

methanol and increased propagation time in the fiber leads lower the sensor bandwidth in 

curve (0 of Fig. 10-9. Lead effects are not as pronounced in this model description since 

N = 20. As might be expected, coils with fewer numbers of turns exhibit further 

reductions in bandwidth due to the lead effects. Even when accounting for the many 

effects that spoil the original near-ideal travelling wave condition, the predicted sensor 

response still shows a bandwidth enhancement of greater than 2.5 compared to the planar 

coil sensor configuration. And this occurs without a loss in Faraday sensitivity. 

In Fig. 10-9, two other features of curve ( f )  are noted. First, the response never 

drops to zero. One explanation for this phenomenon, the liquid dispersion effects, was 

given earlier when describing curve (c). Missing nulls in the response curve can also be 

created by the fiber leads, since they are arranged in a non-travelling wave configuration. 

For curve ( f )  in Fig. 10-9, a combination of both liquid dispersion and lead effects 

contribute to the non-zero response near 300 MHz and also to the loss in higher 

frequency response in the second lobe. The second noted feature in curve (0 is the 

presence of a weak modulation over the entire response. This is entirely due to the fiber 

leads and appears to have a modulation frequency which very closely follows that for the 

planar coil shown in curve (a). This result is somewhat expected, since the leads are 

configured in a planar layout and contribute additional length to the coil proper (as 

described in Appendix B). In travelling wave coil configurations that have fewer turns, 

the lead effects are more dominant, and the modulation is more pronounced. 

The Faraday rotation phase also undergoes various transformations as the effects 

of the liquid travelling wave cell configurations are compounded. Some of these are 

illustrated in Fig. 10-10. Shown are phase response curves that correspond to the 

magnitudes in the lower half of Fig. 10-9; the curve letter indicators remain the same. 

Curve (d) gives the expected response for a sensor whose frequency dependent phase is 
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Fig. 10-10. 
travelling wave current sensor. 
correspond to Fig. 10-9. 

Model predictions of the Faraday rotation phase for a methanol-filled 
The sensor parameters and the curve designators 

determined by the total interaction time, 4 a o. The "apparent" interaction time for a 

travelling wave sensor decreases as the phase matching increases, when in reality, the 

actual interaction time lengthens. The decrease in interaction time is given by the factor 

in parenthesis in Eq. (8-5b). In fact, Eq. (8-5b) describes the phase angle (less the sign 

change) for the travelling wave sensor used to generate curve (d) in Fig. 10-10. Curve 

(e) shows the increasing phase angle with frequency created by the constantly increasing 

value of for the lossless methanol model. The phase is a nonlinear function of 

frequency, giving rise to the less-abrupt phase flip near 300 MHz and the lag in phase 

angle as frequency increases. 

150 



The most noticeable phase deviations occur in curve ( f )  in Fig. 10-10. Flattening 

and diminution of the phase angle curve near the transition frequency is what contributes 

to the missing nulls in the magnitude curve. From previous discussions of the Faraday 

response for fiber sensor coils (see Eq. (5-5) and Fig. 5-1), the zero response magnitude 

occurs at frequencies where the phase is an integer multiple of -n. For curve ( f )  in Fig. 

10-10, the phase never achieves this value, and thus, the corresponding magnitude in Fig. 

10-9 never drops to zero. Also noticeable in the phase curve ( f )  is the weak modulation 

due to the fiber coil leads and the increased phase flattening at the highest frequencies 

due to absorption in the methanol. 

Many of the mechanisms discussed earlier in this chapter, and illustrated in Fig. 

10-9, lead to reduced bandwidths for practical travelling wave fiber current sensors. In 

particular, the waveguide and liquid dispersion in the travelling wave transmission cells 

and the presence of the non-travelling wave configuration of the fiber coil leads preclude 

achieving the near-infini te bandwidth enhancement factors described in Chapter 8 for the 

ideal configurations. These limitations are illustrated in Fig. 10-1 1 where predicted 

magnitudes of the bandwidth enhancement factor are plotted for several configurations of 

the methanol example model. The diameter of the helical coil is again fixed at 3 cm and 

the pitch is varied to allow for a changing d/x, in the plot abscissa. Curve (a) is the BEF 

magnitude for the nondispersive, travelling wave sensor; one point on this BEF curve 

comes from curve (b) in Fig. 10-9. The BEF magnitude is generated from Eq. (8-10) 

with E, = 32.6. At dJx, = 1.2, the BEF approaches infinity. If the model now includes 

liquid dispersion in the methanol, curve (b) in Fig. 10-1 1 results. For this curve, the BEF 

is generated directly from Eq. (8-9) with AB (travelling wave) extracted from numerical 

computations. The peak BEF in curve (b) is limited to - 5.04 and occurs at d/x, x 1.23. 

Although the maximum-achievable bandwidth enhancement is significantly reduced due 

to the absorption, the design parameters for the best travelling wave sensor performance 

remain essentially the same (peak BEF is approximated by Fig. 8-4). From further 
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Fig. 10-11. The bandwidth enhancement factor as a function of the diameter-to-pitch 
ratio for travelling wave current sensors using a methanol dielectric. (a) Helical coil 
only, = 32.6; (b) helical coil, liquid dispersion only; (c) helical coil only, eeff = 14.07; 
and (d) helical coil, E,,, all effects included. 

investigations using the extended models, it appears that the larger the liquid absorption, 

the greater the reduction in the maximum BEF. This prediction is not surprising. 

Curve (c) in Fig. 10-1 1 is the BEF magnitude for the travelling wave current 

sensor including effects produced by the teflon fiber support tube but neglecting 

dispersion in the methanol medium. The BEF curve, computed using Eq. (8-10). is now 

shifted to smaller d/x, values to account for the effective relative permittivity, 

E,, = 14.07. Because of the nondispersive medium, a BEF approaching infinity occurs 

for d/x, = 0.753. Curve (d) is generated for the comprehensive travelling wave model 
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including all perturbing effects. The peak BEF magnitude is - 6.82 and occurs when 

d/x ,  = 0.785. Again this maximum BEF, though attenuated, appears at nearly the same 

d/x, value as that for the ideal travelling wave sensor. The peak BEF magnitude for 

curve (d) is noticeably larger than that for curve (b). This appears to solely depend on 

the static value of the Eeff for the transmission cell dielectric medium; the smaller the 

value of E , ~ ,  the greater the degree of phase matching and the larger the maximum- 

achievable BEF. The inclusion of lead effects in the model used to generate curve (d) in 

Fig. 10-11 reduces the peak BEF by only 3%. This small reduction is obviously due to 

the large number of turns (N = 20) used in the model fiber coil. When fewer turns are 

used, more pronounced reductions in the maximum BEF are predicted. Also noticeable 

in curve (d) is the weak modulation effects produced by the fiber coil leads. 

The complete extended models describing the liquid travelling wave current 

sensors predict that large bandwidth enhancements are possible for many configurations. 

In the previous example for a sensor containing methanol as a dielectric, BEFs greater 

than 6.0 were predicted. However, the model predicts that BEFs will always be below 

10 for most configurations using methanol. For other liquid dielectrics, larger bandwidth 

enhancements may be possible, but for the three test liquids chosen for experimentation, 

estimates are that BEFs will remain less than 10. Bandwidth enhancement is very much 

dependent on travelling wave sensor design parameters such as transmission cell 

geometries, fiber support material and geometry, fiber coil pitch and number of turns, 

and fiber coil lead length and configuration. The comprehensive models indicate that 

highly precise estimates of the effective relative permittivity can be made, and that static 

values for Eeff can be used in Eq. (8-12) to find d/x, for maximum performance in the 

travelling wave sensor design. 

153 



CHAPTER 11 

TRAVELLING WAVE SENSOR MEASUREMENTS 

The relative magnitude of the Faraday rotation was measured for several 

configurations of the travelling wave fiber current sensors. Relative permittivity was 

varied through use of air and liquid dielectrics, and diameter-to-pitch ratio was varied in 

the helical fiber coils. Travelling wave cell configurations are discussed in detail in 

Chapter 9, and the laboratory experimental instrumentation and hardware are shown in 

Figs. 4-1 and 9-1. Measurements with the liquid-filled cells were conducted up to a 

frequency that was limited by loss in response signal-to-noise: a combination of the 

Faraday rotation high frequency rolloff and the absorption of the transmitted power in 

the liquid dielectric. Thus, maximum experimental frequencies were 625 MHz. The 

transmitted power through the coaxial test cells was held constant for most of the high 

frequency testing so that monitored currents could be related directly to power. 

However, as absorption increased it was sometimes necessary to accept the reduced 

transmitted power and correct the data for the relative magnitudes. Also, because of the 

large impedance mismatches that occurred for some of the travelling wave test cells, 

corrections to the estimated conducted currents were attempted. This was only necessary 

in a few extreme cases. 

For all the experimental sensor configurations, an increase was observed in 

response 3 dB bandwidth compared to that for an equivalent planar fiber coil. The 

travelling wave fiber sensor concept was proven, and quantitative information was 

acquired on sensor parametric effects. Also, the complete extended current sensor 

models developed in Chapter 10 predicted quite accurately the magnitude versus 

frequency response curves for most of the systems. Trends in the measured responses 

were noted for the others. 
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Airline Measurements 

One configuration of a travelling wave sensor with an air dielectric was tested. 

The helical fiber coil parameters were N = 10, d = 3 cm, and d/x, = 1.0. Figure 11-1 

shows the Faraday response for that system. Plotted are the measured values of the 

relative magnitude, shown as the open circles, and the model predictions, the solid curve. 

Scatter in the measured data is approximately 1 dB around the plotted points. The 

measured 3 dB bandwidth for the sensor system is - 109.5 MHz. 

As seen in the Fig. 11-1 ,  agreement is excellent between the experimental and 

theoretical values. Below 350 MHz, little deviation is observed; however, at the higher 

frequencies some loss in measured response is seen compared to that predicted by the 
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Fig. 11-1. The relative magnitude of the Faraday rotation for a coaxial airline travelling 
wave fiber current sensor. 
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model. This high frequency discrepancy between model and experiment is consistent 

throughout all measurements made for the travelling wave sensors, air or liquid cells, and 

can only be explained by a deficiency in the model, unaccounted perturbations in the EM 

properties of the transmission cells, or a combination of the two. The model predicts 

quite accurately the non-zero response minimum near 245 MHz in Fig. 11-1. This 

missing null is caused by the fiber leads that enter and exit the coaxial line in a non- 

travelling wave configuration. The fiber leads are also configured such that they add an 

equivalent half turn to the fiber coil length (see Appendix B for a further explanation), 

which reduces the sensor response bandwidth. 

Also plotted in Fig. 1 1 - 1 is a dashed reference curve for the equivalent planar coil 

fiber current sensor. This reference sensor also includes fiber leads in the exact 

configuration as those for the travelling wave coil. The measured values for the 

travelling sensor show an enhanced high frequency response when compared to that of 

the reference sensor. The bandwidth enhancement factor (BEF), determined from the 

ratio of interpolated AB values, is approximately 1.19 (AB for the reference sensor is 

- 103.4 MHz). This is very close to 1.2, the BEF predicted for E, = 1 and d / x ,  =1 by the 

ideal travelling wave theory presented in Chapter 8. Thus, well within experimental 

error, the enhanced response of this sensor can be determined from simple theory. 

Judging from the predictions shown in Fig. 11-1, the extended models (that 

account for fiber lead effects) can be used to identify optimum design parameters for 

general configurations of the airline travelling wave fiber sensor. If the fiber coil 

parameters N = 10 and d = 3 cm are used in the model and the coil pitch is allowed to 

vary, the BEF attains a peak value of - 1.37 at d/x, = 0.33. This prediction is essentially 

identical to that found from Eq. (8-10) and shown in Fig. 8-3 for the idealized travelling 

wave sensors. The mathematical developments leading to Eq. (8-10) neglect the 

presence of the fiber leads, both for the planar as well as the travelling wave coil. 

Obviously, the lead configuration in a 10 turn airline travelling wave coil has little, if 
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any, effect on the relative bandwidth enhancement. However, it is expected that for coils 

with fewer turns or for systems with larger high frequency enhancements that lead 

interactions may be more significant, producing somewhat reduced BEFs. 

Regardless, it is obvious from these predictions and the validating measurements 

on the air dielectric travelling wave current sensor that significant increases in sensing 

bandwidth cannot be achieved with only the helical fiber structure. Slow-wave 

mechanisms for improved phase matching are required. In the present travelling wave 

cell design, this entails use of higher relative permittivity dielectrics. 

Liauid Cell Measurements 

In addition to the three test liquids used as dielectrics in the coaxial transmission 

cells, three different fiber coil helical pitches were employed. These were xo = 3.0, 2.0, 

and 1.5 cm, which correspond to d/xo values of 1.0, 1.5, and 2.0, respectively, since the 

mean coil diameter was held constant at d = 3 cm. The number of fiber turns was 20 for 

the coils with d / x o  = 1.5 and 2.0, and 14 for the coil with d/x, = 1.0. This difference was 

deemed necessary due to the total length of the cell working volume, approximately 46 

cm. A 20 turn coil with the largest coil pitch would have been 60 cm in length. In all, 

nine different sensing configurations were available for experimentation. Actually a few 

additional configurations were explored, involving a varied cell center conductor 

diameter. These variations caused cell impedance to differ from 50 R and produced 

deviations in the dielectric effective relative permittivity (see Eqs. (10-2) and (10-3)), but 

changes in the measured Faraday responses for the sensors could not be distinguished due 

to the relatively large experimental errors (- 1 dB). For this reason, the responses 

presented for the travelling wave current sensors are identified only by test liquid, the 

fiber coil d/x,, and the number of coil turns. 

A typical response curve showing the relative magnitude of the Faraday rotation 

versus frequency is presented in Fig. 11-2 [60]. These data were generated from a 
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Fig. 11-2. The experimental and theoretical Faraday response for a liquid travelling 
wave fiber current sensor containing a methanol dielectric. The helical coil has 20 turns, 
a 3 cm diameter and a diameter-to-pitch ratio of 1.5. 

system that used methanol as the cell dielectric and a fiber sensor coil of 20 turns and 

ax, = 1.5. The measured response values (open circles) agree well with the predictions 

of the sensor model. Deviations between experiment and theory occur only at the higher 

frequencies, in the second response magnitude lobe. Explanations for this discrepancy 

are offered in the previous section. Both the measured and predicted response curves 

show the missing null near 250 MHz in Fig. 11-2 which is the result of liquid dielectric 

dispersion and fiber coil lead effects. 

This travelling wave sensor has a 3 dB bandwidth of approximately 103 MHz and 

a BEF of - 2.2 when compared to the planar sensing coil (dashed response curve in Fig. 

11-2). This enhancement is slightly smaller than the BEF of 2.47 predicted by Eq. (8-10) 
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for a nondispersive dielectric with the effective relative permittivity of the 

methanoVteflon combination and for a leadless helical coil in the same test configuration. 

The difference in these two BEFs, 1 I%, is approximately the same as that illustrated for 

curves (c) and (d) in Fig. 10-1 1 when d/x, = 1.5. 

Using a liquid as the dielectric medium in the travelling wave fiber Sensor 

systems provides the slow-wave mechanism needed to enhance high frequency Faraday 

response. Experimental measurements verified the theoretical predictions that increasing 

the liquid relative permittivity progressively increases the sensor bandwidth. This point 

is illustrated in Fig. 11-3, where response curves for each of the test liquids are plotted. 
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Fig. 11-3. A comparison of the relative Faraday rotation for each of the three test 
liquids used with the same helical coil. The plotted points are experimental values, and 
the solid curves are model predictions of response. The dashed curve is the response for 
an equivalent 20-turn coil with d/x, = OQ. 
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The same fiber sensing coil, N = 20 and d/x,  = 1.5, is used with the three liquids. 

Effective relative permittivities (static values) for the liquids increase from 10.35 for the 

propanol, to 14.07 for the methanol, to 20.94 for the water. Sensor bandwidths are 

approximately 77.4 MHz, 103 MHz, and 159.5 MHz, respectively, for the curves using 

the three liquids. The corresponding bandwidth enhancement factors are 1.65, 2.2, and 

3.4 when compared to the reference curve bandwidth of 46.9 MHz. In Fig. 11-3, both 

measured data (the plotted points) and model-generated responses (the solid curves) are 

displayed. For the parameters used in these experimental configurations, the model 

predictions are shown to be highly accurate. 

The other travelling wave sensor parameter that affects the bandwidth 

enhancement factor is the fiber coil diameter-to-pitch ratio. Experimentation on similar 

configurations with each test liquid while varying only d/x, showed that increasing the 

coil pitch improved sensor phase matching and increased response bandwidth. In Fig. 

11-4, a plot of the relative magnitude of the Faraday rotation versus frequency is given 

for several methanol liquid cell configurations. Both experimental values and model- 

generated curves are again plotted for the Faraday response, except for d/x ,  = 1.0, which 

is represented only by a modeling prediction. As discussed earlier, the fiber coil with 

d/x, = 1.0 had only 14 turns, while the other coils had 20 turns. Since the comprehensive 

model predictions for the travelling wave fiber current sensors agree quite well with the 

measured values, liberty was taken to generate the extra curve for the larger coil pitch 

and appropriately complete the illustrated comparisons. In Fig. 11-4, as d/x, decreases 

(xo increasing), the BEF increases. Values of approximately 1.6 (with AB = 75.3 MHz), 

2.2 (AB = 103.5 MHz), and 3.9 (AB = 183.3 MHz) are attained for dx, = 2.0, 1.5 and 

1.0, respectively. As illustrated previously in Fig. 10-11 for a similar methanol-filled 

sensor cell, the BEF grows nonlinearly with decreasing d/q. When d/x, =1.0, the sensor 

system parameters are very close to meeting the travelling wave condition for maximum 

phase matching. 
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Fig. 11-4. The relative magnitude of the Faraday rotation for a travelling wave current 
sensor with a 20-turn helical coil in a methanol-filled transmission cell. The diameter-to- 
pitch ratio is varied to show the correlation with response bandwidth. 

The largest bandwidth enhancement achieved during experimentation with the 

liquid travelling wave sensors was approximately 4.1 for a water-filled test cell using a 

fiber coil with 14 turns and ax ,  = 1.0 [60]. Figure 11-5 shows the Faraday response 

curve for this sensor. The measured sensor bandwidth is - 300 MHz, which is the 

largest for any multiturn fiber current sensor reported to date. An estimate of the system 

sensitivity-bandwidth product (SBP) for this wideband sensor is 1.85 x rad/A-s or 

1.06 MHz-"/A. This SBP, though much larger than any for a fiber current sensor, is 

approximately seven times smaller than reported for a bulk optic current sensor using 

Ga:YIG as the Faraday rotator material [30]. In Fig. 11-5, the rolloff in the response for 

frequencies above the 3 dB point is quite dramatic, but significant response S/N is seen 
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for frequencies as high as 400 MHz. For some current monitoring applications, this 

sensor could be used to these higher frequencies. 

At the low frequencies in Fig. 11-5, below 200 MHz, the measured values (open 

circles) agree well with the model predictions (solid curve). Above 200 MHz, however, 

the experimental and theoretical values deviate significantly. Here, the quantitative 

ability of the comprehensive travelling wave model to predict sensor responses breaks 

down. It is postulated that the electromagnetic properties of the transmission cells are 

not adequately described in the model since contributions that do not adhere to the 

quasi-TEM assumption are ignored. The source of such contributions could be large cell 
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Fig. 11-5. The measured and modeled responses for a travelling wave fiber current 
sensor using a coil with N = 14, d = 3 cm, and dx, = 1.0 inside a cell containing water. 
The measured bandwidth for this configuration is approximately 300 MHz, the largest 
for any of the experimental systems. 

162 



reflections, cell multimoding by nonazimuthally-symmetric modes, or a combination of 

these and other high frequency effects. 

In spite of these discrepancies, qualitative trends are observed in the measured 

response values that are predicted by the model. One of these is the abrupt rolloff of the 

curves. For the model-generated response, this occurs between 300 and 500 MHz, with 

magnitudes dropping from approximately 0.95 to near 0.05. A probable explanation for 

this fast rolloff lies in the rapid increase of the effective relative permittivity for the TM,, 

mode in the water transmission cell. From Fig. 10-7, the value of E,* increases from 

- 23 at 200 MHz to - 40 at 500 MHz; thus, at the higher frequencies, the magnetic wave 

is travelling much slower. For frequencies below - 150 MHz, the wave phase velocity is 

essentially constant and the Faraday response curve will behave normally with a given 

travelling wave enhancement. But as E,, increases rapidly above 200 MHz, the phase 

matching is also modified, first increasing slightly, then decreasing significantly as the 

light in the fiber now begins to outrun the progressively slowing magnetic wave. The 

travelling wave condition for this water cell configuration should occur when E,, = 23.5 

according to Eq. (8-12). Thus, at approximately 220 MHz, the phase matching predicted 

by the model is greatest, and the travelling wave enhancement peaks. As the frequency 

increases beyond 220 MHz, the enhancement decreases and the response curve quickly 

drops. At 500 MHz, predictions indicate that travelling wave enhancement has been 

reduced by nearly a factor of three from its peak value. 

The experimentally determined values in Fig. 11-5 show a rapid rolloff at much 

lower frequencies than predicted by the model. This decreased response at a lower 

frequency could be caused by the changing wave impedance of the ml mode in the 

transmission line. As seen in Fig. 10-8, the wave impedance for the water-filled cells 

increases significantly, and rapidly, above 150 MHz. Thus, the propagating wave 

becomes less quasi-TEM with a larger field component along the positive axial direction 

of the cell. This should produce an enhanced phase matching between the magnetic 
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wave and the light in the fiber at lower frequencies than predicted by the model (the 

model does not address the "non-quasi TEM" conditions of the EM wave). A resultant 

loss in travelling wave enhancement then occurs at somewhat lower frequencies due to 

the combination of the rapidly increasing E, and q. The experimental values in Fig. 11- 

5 appear to confirm this hypothesis, with essentially flat frequency response below 150 

MHz, and rapid decrease above that frequency. 

Also seen in Fig. 11-5 is the weak modulation created by the fiber coil lead 

effects. This modulation is apparent in  both the measured and model-generated curves. 

The depth of modulation is slightly larger for this sensing configuration, primarily due to 

lead effects having a greater impact on coils with smaller numbers of turns. The largest 

response perturbations caused by lead effects have also been observed when liquid 

absorption is minimum and when travelling wave enhancements are near maximum. 

Both of these conditions apply to this water dielectric current sensor configuration. 

The largest sensor bandwidths measured for the propanol and methanol-filled 

travelling wave cells also occurred for the fiber coils with N = 14 and d/x, = 1.0. The 

experimental 3 dB bandwidths for these sensors were approximately 137 MHz and 221 

MHz for propanol and methanol liquid dielectrics, respectively. Corresponding BEFs are 

2.1 and 3.3 for the given configuration. Figure 11-6 is a plot of the Faraday response 

curves for the widest bandwidth current sensors using each of the three test liquids. As 

expected, the bandwidth becomes progressively larger as the liquid relative permittivity 

increases. But at the higher frequencies, the curve for the water-filled cell has a faster 

response rolloff and crosses the curve for the methanol cell. This indicates that a 

travelling wave current sensor using methanol as the dielectric medium may be more 

useful at the higher frequencies, since the S / N  remains quite large to well beyond 500 

MHz. 

In Fig. 11-6 only the measured values for the three liquid dielectric cells are 

plotted. For these wide bandwidth sensors, the discrepancies between the measured 
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Fig. 11-6. The measured relative magnitude of the Faraday rotation for the largest 
bandwidth travelling wave sensors using each of the three test liquids. The common coil 
configuration had N = 14, d = 3 cm, and d/x,  = 1.0. 
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Faraday responses and the model predictions are noticeable, as seen in Fig. 11-5. It is 

observed that for sensor configurations with low values of the BEF, the comprehensive 

travelling wave model predicts quite accurately most features of the response magnitude 

(as seen in Fig. 11-2); however, for configurations with larger BEFs, the model 

predictions consistently show a greater relative magnitude at the higher frequencies than 

the measured values. This occurred for all the liquid cell configurations when d/x, = 1.0 

and N = 14. Although, the theory-experiment discrepancy is much less for the propanol- 

filled sensor cell (approximately 6.5% at the 3 dB point in the response curve) and the 

methanol-filled cell (approximately 1 1 %) than for the water-filled cell. These 

discrepancies become slightly greater at the higher frequencies. 

165 



Phase Considerations 

Throughout experimentation with the travelling wave fiber current sensors, only 

response magnitudes were measured. A phase delay measurement is much more difficult 

to make than a magnitude measurement, and none was attempted as part of this study. 

However, this characteristic of the sensor systems is needed to provide the complete 

transfer function for the Faraday interaction. It is hoped that measurements of the 

Faraday response magnitude presented here along with the well-developed models to 

predict sensor behavior is adequate to fully describe the wideband transient response. 

For most of the liquid-cell experimental sensor configurations, the comprehensive 

travelling wave model was quite accurate in its predictions of the magnitude; it is 

reasonable to expect that phase delays can be predicted equally as well. Thus, during 

travelling wave current sensor design, the models presented in Chapter 10 should be 

useful in describing both Faraday rotation magnitude and phase. Time domain response 

measurements should follow to finalize and verify sensor characteristics. 

166 



CHAPTER 12 

OTHER TRAVELLING WAVE CONFIGURATIONS 

The liquid travelling wave configurations show enhancements in the bandwidth 

of Faraday effect fiber current sensors, all without a loss in the sensitivity. Significant 

increases in sensor bandwidth and sensitivity-bandwidth product have been 

demonstrated. However, estimates of the maximum BEFs using models of the liquid 

transmission line sensing structure are limited to less than 10. Further increases in 

current sensor bandwidth and sensitivity might be possible, but significant deviations 

from the existing travelling wave structures will most likely be required. In this chapter, 

several innovative schemes that utilize travelling wave current sensing configurations are 

discussed. Predictions of the potential response, bandwidths and high frequency 

characteristics, are made where appropriate. 

In the liquid travelling wave sensors, dielectric dispersion is the major bandwidth- 

limiting factor, while the need to support the fiber helix in the liquid leads to a 

waveguide dispersion that can also affect higher frequency response. One way of 

eliminating these factors is to use a solid dielectric as the propagation medium in the 

slow-wave structure. A very low-loss material at microwave frequencies can be 

identified so that dielectric dispersion is minimized, and the dielectric alone should be 

capable of supporting the fiber coil without use of other interfering materials. As part of 

this study, a travelling wave structure using a ceramic dielectric was designed, and its 

electromagnetic properties were characterized. 

Another disadvantage of the liquid (and air) travelling wave current sensors is 

size. The liquid test cells were quite large, 6.35 cm diameter and 53.8 cm length, in 

order to accommodate the 20 turn fiber helical coils. Such large size is tolerable for 

laboratory development, but practical systems need to be much smaller. Reductions in 

device size can be accomplished in three ways: (1) using dielectric materials with 
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extremely large relative permittivities, so that ~0 is minimized for a given bandwidth; (2) 

decreasing the fiber coil diameter so high-sensitivity coils with many turns are still short; 

and (3) developing optical fibers with larger Verdet constant materials so high sensitivity 

is achieved with fewer coil turns. All of these methods have limitations, some of them 

severe, due to present technology. 

Thus, constructing usable travelling wave current sensors will require new 

technological developments and possibly new materials in new configurations. Fiber 

coils have been utilized exclusively because of their ease of use, but they may have to 

give way to other optical waveguide structures. Or the coaxial transmission line with 

helical light guide must be abandoned altogether. New configurations are postulated here 

in hopes of stimulating further development of wideband optical current sensors. In 

addition to the ceramic dielectric transmission line structure, devices that use helical 

optical waveguides, planar integrated waveguides, and bulk optical materials are 

discussed. Travelling wave configurations include the use of helical conductor paths as 

well as looping optical paths. For the sake of completeness, travelling wave designs that 

utilize combinations of the fiber sensing techniques discussed in the earlier chapters are 

covered here. The theoretical framework derived for those techniques provides an 

excellent means for predicting high frequency response, even in non-fiber systems. 

Ceramic Dielectric Travelling Wave Sensor 

A solid material with a large relative permittivity that is suitable for use in a 

transmission cell is difficult to find. Typically, polyethylene or teflon is used in coaxial 

cables because of their flexibility and good microwave characteristics; but they have 

relative permittivities of less than 2.5. Higher q materials are generally limited to the 

high-alumina content ceramics and the titanates (barium, strontium, calcium, magnesium 

and lead) [67]. These materials have very good microwave characteristics, but lack 

much of the fabrication flexibility afforded by the polyethylene or teflon. With these 
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properties in mind, a diamonite high alumina (95%) ceramic with a static relative 

permittivity of 9.6 was chosen as the candidate material for a solid dielectric travelling 

wave structure. This ceramic does exhibit some dielectric dispersion, as drops to 9.36 

at 10 GHz. 

The fabricated coaxial transmission cell with ceramic dielectric is shown in the 

cross- sectional composite view of Fig. 12-1 [34]. The test cell working volume consists 

of five ceramic pieces; each were cast and fired separately. The core component is a tube 

6 cm long with a 1.3 mm inner diameter and 6 mm outer diameter. Along the outer 

surface of the tube a 10-turn helical groove is machined approximately 0.75 mm deep. 

Mating ceramic parts were fabricated so the entire dielectric structure filled the coaxial 

cell working volume: 10 cm long and 1.59 cm in diameter. 

The ceramic pieces were designed to double as an annealing fixture for the 10- 

turn singlemode fiber coil. Fiber annealing is necessary on this sensor in order to 

remove the large linear birefringence produced by the small radius turns [21]. Initially, 

Brass Center Conductor 

J 

Fig. 12-1. 

ceramic dielectric. 
A composite drawing of a travelling wave sensor transmission cell with a 
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the fiber is wound into the groove of the tube with ample lengths of excess fiber for 

leads. The remaining ceramic pieces are assembled around the fiber, the transmission 

line's brass center conductor is passed through the ceramic parts, and the whole structure 

is taken to a high temperature (- 850 "C) to perform the annealing process [22]. After 

annealing, the outer conductive shield of the transmission cell is assembled around the 

dielectric containing the fiber coil. Cutaway and disassembled views of the travelling 

wave transmission cell (less the optical fiber) are shown in the photographs of Fig. 12-2. 

Annealing of the helical fiber coil, final assembly of the sensor, and measurement 

of the Faraday response have yet to be conducted. To date, fiber annealing has only 

occurred for coils in a planar configuration [22]. Extending this technology to other coil 

shapes is still a challenge, but likely one with a workable solution. In the annealing 

process, the singlemode optical fiber with its buffer coating is place in the annealing 

fixture. Pretreatment of the fiber by soaking in solvent, typically acetone or methylene 

chloride, allows the buffer to evaporate at a relatively low temperature in the annealing 

cycle (300 to 400 "C), leaving the bare glass fiber to be annealed [22]. Ideally, a soft 

ceramic such as Macorm is used to prevent scratching and fracturing of the fiber. The 

diamonite ceramic used in the travelling wave sensor design is much harder than 

Macorm, but it also has a significantly larger relative permittivity. One challenge is to 

determine if the fiber coil will survive the annealing cycle. A second challenge is to 

apply a protective coating on the fiber while it remains in the ceramic fixture. 

Backfilling with a thinned polyurethane or silicone elastomer should provide a soft coat 

for the fiber. 

In the absence of finished hardware and measured responses, the utility of the 

ceramic-filled travelling wave current sensor can only be evaluated from cell 

electromagnetic characterization and modeled Faraday responses. Based on cell 

geometries and the relative permittivity of the ceramic dielectric, the higher order mode 

cutoff frequency for the transmission line is 3.6 GHz. The impedance of the cell was 
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Fig. 12-2. Photographs of the ceramic dielectric travelling wave transmission cell. 
(a) A cutaway view of the cell showing the fiber mandrel guide: a 10-turn helical groove 
in the outer surface of the 6-mm ceramic tube. (b) The fully disassembled cell. 
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characterized for frequencies below 5 GHz. A plot of the impedance magnitude is 

presented in Fig. 12-3. Oscillations in the impedance are created by reflections at the 

transition points into the cell dielectric volume. These cause the cell impedance to vary 

between - 20 R and - 120 R for the frequencies below 5 GHz. If the frequency range is 

limited to 2.5 GHz, a likely cutoff in the Faraday response characterization, impedance 

deviations about 50 S2 are bound within 1.3 dB. Also, below 2.5 GHz the test cell has a 

very impressive SWR of 1.4. 

The predicted Faraday response for this travelling wave sensor is shown in Fig. 

12-4. Plotted are model-generated curves for both the magnitude and the phase. The 

E 
W 

Frequency (GHz) 

Fig. 12-3. The measured impedance magnitude of the ceramic dielectric transmission 
cell for frequencies below 5 GHz. The cell HOM cutoff frequency is 3.6 GHz. 

172 



m0 
\ 
3 
8 

n 

u 

n 
n 
3 
8 

M 

u 

U 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 

-% 

-n 

' I  
\ I  \ 

I I I I I I 
\I 

I 

1 2 3 4 

Frequency (GHz) 

Fig. 12-4. The predicted frequency dependent magnitude (top) and phase (bottom) of 
the Faraday rotation for a travelling wave current sensor using a ceramic dielectric and an 
annealed helical fiber coil. The solid curve includes some dielectric dispersion; the 
dashed curve is for a system with no dielectric dispersion. 
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solid curves are determined using a model that includes a small amount of dielectric loss 

in the ceramic. These losses are based on a Debye molecular reorientation model much 

like the liquid dispersion treated earlier [71]. Typical effects in the Faraday response 

result from the dielectric dispersion: some loss of bandwidth in the main response lobe, 

the missing null in the response magnitude, and the lack of maximum phase deviation at 

the frequency where zero magnitude usually occurs. The fiber coil leads have essentially 

no affect on the travelling wave sensor response because of their designed configuration. 

Leads enter and exit the coil from the same direction making the transition to the helical 

shape over a minimal distance and with a radius of approximately one-half that of the 

coil. It is intended that the fiber annealing process will adequately remove any linear 

birefringence in this lead transition region. 

The projected sensor bandwidth is approximately 1.45 GHz, with a corresponding 

bandwidth enhancement factor of 2.8. It appears from Fig. 12-4 that response S/N is 

large enough at 2.5 GHz that measurements are possible up to this frequency (over the 

frequency range where the cell has a very good SWR). Estimated value for the 

sensitivity-bandwidth product for this travelling wave device is 3.85 MHz-O/A, more than 

three times larger than that of the water-filled travelling wave current sensor. However, 

this SBP remains a factor of two below that measured for the bulk optic Faraday effect 

current sensor [30]. 

Combination Fiber Sensors 

It is possible to use the helical fiber coil concept with the noncentered or 

noncircular, planar fiber coil concept to form a new travelling wave fiber current sensor 

configuration. The combination allows all of the separately-observed bandwidth and 

high frequency enhancements for these coil configurations to be utilized in a single 

sensor. The frequency dependent Faraday response for this combination is found directly 

from Eq. (3-7). In Chapter 3, two simplifying routes were developed, which led to the 
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travelling wave coil configurations or the noncenteredhoncircular coil configurations. 

Here no simplifications are made. To illustrate the combination sensor approach, a 

mathematical model is briefly outlined for a travelling wave fiber coil with a displaced 

(noncentered) conductor within the coil cross section. 

The function [(l/r) cos(y)] in Eq. (3-7) describes the deviation in the Faraday 

interaction due to the nonconcentric axes of the current-carrying conductor and the fiber 

coil. Equation (6-3) for this function is valid for the combination sensor, but with R now 

representing the mean radial distance from the helical coil axis to any perpendicular point 

on the fiber, and the time dependence of the angle a now given by 

C 
a(t> = t ,  (12-1) 

where AL is defined by Eq. (8-1 1). Also, the reference angle in Eq. (6-3) is now 

expressed by a, = c b / (n R AL). The phase factor in Eq. (3-7) is modified according to 

the developments in Chapter 8, leading to the form given in Eq. (8-4). Then an integral 

expression for the noncentered, travelling wave fiber current sensor is 

1 
7 

@(a) = O0 - I 

1 

-jO t 

e 

( 12-2) 

where z is now the total transit time of light propagation through the helical fiber coil 

given by 

(12-3) 
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The solution to Eq. (12-2) proceeds as followed in Chapter 6 using long division 

decomposition of the first bracketed factor in the integral. The resulting series is 

integrated term by term and then simplified to yield an expression similar to Eq. (6-14). 

The frequency dependent Faraday response for the combination sensor is 

where is given in Eq. (8-5b) for the travelling wave configurations and 6 is the fraction 

of the single loop propagation delay taken from Eq. (6-11). Both of these variables are 

functions of z as given by Eq. (12-3). 

The Faraday response predicted by Eq. (12-4) is simply that determined by Eq. 

(6-14) for a noncentered, planar coil expanded in the frequency domain to account for 

the travelling wave interaction. Figure 12-5 shows the predicted response for a two-turn, 

travelling wave sensor coil with d = 3 cm, d/x, = 1.0, and 6 = 0.5 and with the conductor 

fully displaced in the coil cross section, X, = R. The fiber coil is treated as leadless. The 

displaced conductor creates a response resonance where initially the second null occurs 

in the centered-coil travelling wave response. This response is identical to the resonant 

behavior observed for the noncentered, planar coil predictions. The travelling wave 

characteristics of the sensor coil produce a large bandwidth enhancement (compare the 

dotted and dashed curves in Fig. 12-5.), and a smaller, but notable, enhancement is 

created by the nonconcentric axes (dashed and solid curves). From Table 6-1, the BEF 

of the solid curve should be 5.8% larger. And as discussed in Chapter 6,  the small 

enhancement due to the noncentered coil decreases as the number of fiber turns in the 

coil increases. 

It is obvious from Fig. 12-5 that combining coil manipulation schemes with the 

travelling wave concept can enhance the high frequency response of the fiber current 

176 



1.0, I I I I I I I I 

E, = 10.0 
N = 2  
d = 3 c m  - 0.8. 

0.6.  0" 
\ 
n 
3 
6 0.4, 
u 

0.2. 

0.0- 

'\ \ \ 

d/x, = 1.0 
= 0.5 

I 
I 
I , 
I I 

I 
I 
I I 

I 
I 
I 
I 
I 
I I 

I 
I 
I 
I I 

I I 

I 
I 
I 
I 
I , I 
, , , , 
I , I 

I I I I I I I I I 
1 2 3 4 5 6 7 8 9 10 

Frequency (GHz) 

Fig. 12-5. The predicted relative magnitude of the Faraday rotation for a two-turn 
travelling wave fiber sensor with the current conductor fully displaced in the coil cross 
section. The dotted curve is the reference response for a centered, planar coil. 

sensors. Other combinations of sensing concepts are certainly possible, and 

mathematical expressions to predict their Faraday response can be developed using the 

existing theories. 

Non-Fiber Configurations 

Several travelling wave current sensor configurations that utilize bulk optics or 

planar waveguides have been formulated. Three of these are discussed here to show 

options to the helical fiber travelling wave design. Some quantitative information is 

provided, but most of the discussion is conceptual. 
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1. Helical Waveguide Sensor 

The ceramic dielectric travelling wave current sensor, with an annealed helical 

coil, offers significant reduction in size and large improvement in the sensitivity- 

bandwidth product compared to the liquid travelling wave configuration, but absolute 

Faraday sensitivity still suffers. The only mechanism for improving the static response is 

to add fiber turns. However, this will increase the length of the transmission cell as 

further reductions in coil diameter (even using the annealing process) do not appear 

feasible. A planar waveguide structure fabricated on the surface of a cylindrical substrate 

could provide the optical propagation medium. Envisioned is a singlemode rib 

waveguide etched on the surface of a glass or crystal which has a high Verdet constant. 

Singlemode waveguides are typically a few micrometers in dimension, and such 

structures have not been demonstrated on other than flat surfaces. A real challenge exists 

in fabricating such a waveguide, especially in a helical layout. Significant reductions in 

waveguide helix diameter are possible with this concept. 

The terbium-doped borosilicate glass, FR-5, has a Verdet constant that is 

approximately 20 times larger than that of a silica fiber (see Table 2-1) [39,40]. A 

waveguide fabricated from this material would significantly improve the Faraday 

sensitivity of a current sensor. FR-5 glass has a relatively high loss per unit length for a 

waveguide medium [25], but the total attenuation should be small since the proposed 

light transit distance is short. If a travelling wave light path is created with a mean 

diameter of 2 mm, 10 turns and d/x, = 1.0, the sensor bandwidth is predicted to be 

- 2 GHz. The projected sensitivity-bandwidth product is approximately 106 MHz-O/A. 

These computations assume a laser wavelength of 633 nm, so that n = 1.684 for the FR-5 

glass [40], and that the glass medium is the sole dielectric in the coaxial line. An 

estimate of the relative permittivity of the FR-5 is 5.0 in the 1 MHz to 1 GHz frequency 

range based on handbook values for similar glasses [76]. If only a thin cylinder of the 

FR-5 substrate is used along with a higher E, ceramic as the remaining dielectric, the 
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bandwidth can be enhanced even further. Assuming Eeff = 9.0 for the slow-wave 

structure, the sensor will have a AB = 2.6 GHz and a SBP = 137.5 MHz-O/A. The 

waveguide will only be 2 cm long, and the entire device package should not exceed one 

inch long by half inch in diameter, excluding the RF connectors and the supporting 

optoelectronics needed for light production and detection. 

The challenge of mating miniature lenses, polarizers and optical fiber to the 

waveguide structure is not addressed here, however, these technologies are becoming 

quite advanced and should not be a limiting factor. If the complete sensing system can 

be fabricated and assembled, it would provide milliampere current detection at greater 

than 100 MHz bandwidth. These figures rival or surpass conventional electrical current 

monitors [4], with the added advantages afforded by the noninterfering optical 

techniques. 

2. Bulk Optic Sensor 

Another prospective travelling wave current sensing technique utilizes a bulk 

optic Faraday rotator material and reverses the optical and current-carrying paths in the 

structure. The current passes through a wire solenoid wound around a cylinder of the 

optical material. Figure 12-6 shows a schematic drawing of the sensor. The magnetic 

field inside the solenoid is axial and scales linearly with both the current and the number 

of wire turns. The light is injected along the cylindrical axis of the Faraday material and 

is codirectional with the magnetic field. Sensitivity of this device can be controlled by 

varying the wire turns and the choice of optical materials. In this scheme the propagating 

light will outpace the magnetic field since it travels a shorter path. Bandwidth will 

depend on phasing between these two signals. 

This technique should produce small, yet responsive, current monitors when 

implemented. As an example, FR-5 glass is selected as the Faraday rotator material and 

cast in a cylinder 2 mm in diameter and 2 cm long. Forty turns of wire (30 or 32 gauge 
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Fig. 12-6. 
generate an axial magnetic field inside a cylindrical piece of Faraday rotator material. 

A wideband bulk optic current sensor with a helical wire coil used to 

should be small enough, yet capable of handling sufficient current) is wrapped in a 

helical solenoid around the glass. Because of the helix pitch, 0.5 mm, the magnetic field 

phase velocity along the solenoid axis is approximately an order of magnitude smaller 

than that of the propagating light. Consequently, the system 3 dB bandwidth should be 

limited to approximately 250 MHz. The measurement sensitivity of this device, 

however, is quite high, with an estimated noise equivalent current at full bandwidth of 

0.75 A and a projected sensitivity-bandwidth product of approximately 51 MHz-O/A. 

One design difficulty with the wire solenoid is its large reactance at the higher 

frequencies. Near the sensor 3 dB bandwidth, the inductive reactance exceeds 500 Q 

which can limit signal current propagation. By adding distributed capacitance through 
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use of a transmission line ground plane, this effect is countered [77]. The coaxial line 

structure shown in Fig. 12-6 is such an implementation. The device characteristic 

impedance can be returned to 50 l2 by maintaining a spacing of a few mils (- 0.2 mm) 

between the solenoid and the outer coaxial conductor. By choosing a thin electrical 

insulating material such as mylar for the spacer, the relative permittivity is closely 

matched with that of the FR-5 glass, and the electromagnetic properties of the 

transmission line are optimized. 

3. Planar Waveguide Sensor 

A third travelling wave sensor configuration incorporates a serpentine singlemode 

planar waveguide in the dielectric substrate of an RF stripline. This structure is shown in 

the schematic of Fig. 12-7. The waveguide is perpendicular as it passes under the RF 

trace, and the propagating light interacts N times with the magnetic field. Each 

interaction is over a very short distance so the Faraday response behaves much like that 

for the delta function interaction described in Chapter 7. Only with this current sensor, 

the sign of Bedl changes with each consecutive pass by the conductor. A combination of 

previously developed techniques and models can be used to predict responses. 

The frequency dependent Faraday rotation is determined by introducing the 

travelling wave phase factor, exp[-jot(1 - V~ight /~ph)]  into Eq. (7-4) and accounting for the 

counter-rotating interactions using (-l)m in the series. The resulting delta function 

response has the form 

(12-5) 

(12-6) 

with 
n 

21 = -L, , 
C 
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Fig. 12-7. A planar waveguide travelling wave optical current sensor. The waveguide 
follows a serpentine path that makes several passes by the stripline conductor. 
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and 

(1 2-7) 

where X0/2 is the distance along the stripline between waveguide interactions, and L1/2 is 

the light propagation distance between interactions. In Eq. (12-5) any arbitrary phase 

delays between the light and the magnetic field have been ignored. 

The response predicted by Eq. (12-5) is unique in that it depends on N being even 

or odd and the degree of travelling wave phase matching. At the low frequencies, o + 
0, the relative response is 

I 

if N is even 

I Y  

m=O I '  

The maximum relative response, O,, is not attained at the low frequencies (unless N = 1) 

since every second pass of the light by the conductor negates the response of the previous 

pass. Maximum response will involve all N interactions and is given by 

0 0  = N V B C  , (1 2-9) 

where C is the short interaction length between the light and the field as the waveguide 

passes near the RF conductor. 

Equation (12-8) also describes the Faraday response for perfect phase matching 

between the two propagating signals. When the travelling wave condition is met, 5' = 1, 

and the phase factor in Eq. (12-5) is again equal to one. Thus, under ideal travelling 

wave conditions and with N odd, the response magnitude is 1/N for all frequencies. This 
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implies that optimum sensors with near perfect phase matching only require that N = 1. 

For less than perfect phase matching, the sensor Faraday response exhibits 

resonances, as seen previously for the delta function interactions. In Fig. 12-8 the 

response relative magnitude is plotted versus the normalized frequency, m1/2, for a 

waveguide device making three passes by the conductor. The use of the normalized 

frequency for the plot abscissa removes structure dimensions from the computations and 

presents the response in a form consistent with those in Chapter 7. The degree of phase 

matching is quite important in determining the frequency responses shown in Fig. 12-8. 

0" 
\ 

1 I I u.u I 

0 7l 21T 37T 

Normalized Frequency, wT./z  

Fig. 12-8. The predicted relative magnitude of the Faraday rotation for the planar 
waveguide travelling wave current sensor. The waveguide makes three passes under the 
RF trace. Three phase matching conditions are shown: none (s' = 0), intermediate 
(s' = 0.5) and perfect (5' = 1). 
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Resonance maxima occur when 

- 0 71 (1 - s') = (2m' + l ) n ,  m' = 0, 1, 2, ... . (12- 10) 
2 

The frequency dependence of the maxima on N is removed since the transit time 2, is 

used. But the number of nulls occurring between the response peaks is N - 1. For 

frequencies below the first maxima, there are %(N - 1) nulls if N is odd and N/2 nulls 

(including the one at zero frequency) if N is even. Also, the bandwidth of the high 

frequency resonances is determined by the total transit time z = N (71/2). If the number 

of waveguide passes under the stripline gets quite large, N + -, the response becomes 

concentrated at frequencies near resonance, approaching zero relative magnitude between 

the maxima. 

One of the advantages of this planar waveguide current sensor is its large 

narrowband, high frequency response. By tailoring the device parameters, these high 

frequency bands can be utilized. (As discussed in Chapter 7, the resonant response does 

not continue to infinity but is bound by an enveloping function that depends only on the 

interaction length e.) As an example, the characteristics of a practical waveguide sensor 

are estimated. The example device uses a substrate material 0.5 mm thick with a relative 

permittivity of 5.0. The singlemode waveguide has a refractive index of 1.68 (FR-5 

glass) and makes five passes by the conductor, every 1 cm along the light path and every 

2.5 mm along the.current path (xo/L, = 0.25). The 50 IR stripline has a trace width of 

- 1.7 mm. An estimate of the magnetic flux density along the light path at each 

interaction point is B = 0.0025 T/A, which produces a peak Faraday rotation of 0, = 

0.087 '/A. The static rotation is 1/5 this value or 0.017 "/A. Frequency parameters are 

quite impressive: the first null in the response curve occurs at 2.68 GHz, the first 

resonance maximum with relative magnitude of one occurs at 13.4 GHz, and the 
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resonance response bandwidth is 2.37 GHz. The bandwidth of the lowest frequency 

response lobe is approximately 1.2 GHz. As a comparative measure, the SBP for this 

device is only 20.4 MHz-O/A at low frequencies, but has an SBP of 204 MHz-"/A, or ten 

times larger, in the resonance frequency band. 
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CHAPTER 13 

CONCLUSIONS 

A thorough investigation has been made of the high frequency response of planar 

and travelling wave Faraday effect optical fiber current sensors. Several models have 

been developed that provide excellent response predictions for fiber coils in a variety of 

sensor configurations. Measurements of the magnitude of the high frequency response 

for the sensors verify many of the model predictions. Thus, some unique Faraday effect 

current sensors have been demonstrated and reported for the first time as a result of this 

study. 

Three basic configurations of planar coil fiber current sensors were explored: 

circular cross section coils with coincident coil and conductor axes; circular coils with 

the conductor displaced from the coil axis; and noncircular and highly elongated coils 

with the conductor centered or fully displaced in the coil cross section. Travelling wave 

current sensors were also explored. They consisted of helical fiber coils with constant 

diameter immersed in the dielectric of a coaxial transmission line. Both air and liquid 

dielectrics were used in these transmission lines. Both groups of current sensors, planar 

and travelling wave, required the development of coaxial transmission test cells [34] to 

properly characterize the fiber coils at high frequencies (up to 1 GHz). 

Planar fiber current sensors with a circular coil cross section and concentric 

coilkonductor axes have an easily predictable high frequency response determined by 

light transit time in the fiber. Many measurements were made with coils of varying radii 

and numbers of turns to demonstrate this concept. All tests extended in frequency 

beyond the cutoff frequency of the sensors and, in some cases, covered several of the 

higher frequency response lobes. Of particular interest in this sensor category were 

measurements using a 20 turn, 6.4 mm diameter coil which had been annealed to remove 

bend-induced linear birefringence [21,22]. This sensor has a bandwidth of 229 MHz and 
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a sensitivity-bandwidth product estimated at 0.8 MHz-"/A. The measurements on this 

sensor verified that the annealing process can successfully be used to manufacture small 

radii coils with improved sensitivity-bandwidth products and without the detrimental 

birefringence effects. 

Important in the correct modeling of the frequency dependence of fiber current 

sensors are the effects of leads. They add to the total length of fiber that the light must 

traverse and can result in reduced detection bandwidths. In some configurations, the 

fiber leads add an effective half turn to the coil length, which significantly alters high 

frequency response, especially for coils with small numbers of turns. 

Noncentered and noncircular planar coils used as fiber sensors exhibit resonances 

in their high frequency response. Resonance magnitudes are dependent on the 

displacement distance between the coil and conductor axes and the eccentricity of the 

coil cross section. Spacing of the resonance frequencies depends on the length of fiber in 

a single coil turn. This type of response at the higher frequencies is compared to similar 

responses that occur in tapped and recirculating fiber delay line devices [64,65]. To aid 

in the characterization of the high frequency Faraday rotation for a coil with a highly 

elongated cross section and the conductor at maximum displacement, a delta function 

model was introduced. This model is based on a point interaction between the magnetic 

field and the light, and it provides an excellent theoretical framework for building 

frequency response functions for sensors that exhibit bounded resonant behavior. A 

rectangular cross section coil model was used to predict the frequency response for 

sensors with arbitrary coil cross section and with arbitrary placement of the conductor 

within the coil. A connection between the noncentered, circular coil and the highly 

elongated coil was provided by the rectangular coil model as it allowed for varying 

eccentricity of the cross section. One additionally interesting feature is that resonant 

responses at high frequencies occur for fiber current sensors with the conductor outside 

the coil cross section, even when such response is prohibited at the low frequencies as 
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described by Ampere's law. 

Single-turn and few-turn planar fiber coils exhibit sensor 3 dB bandwidths that 

are significantly affected by coil configuration. The maximum bandwidth for these 

sensors is realized for a highly elongated, one-turn coil (a delta function interaction); 

ideally the bandwidth approaches infinity. Light entry point into the single-turn, circular 

coil can create a factor of two difference in response bandwidth when the conductor is 

fully displaced in the coil cross section. If light enters away from the radial conductor 

offset, a large (- 50%) bandwidth increase is observed compared to the centered coil; if 

light enters nearest the conductor, a significant loss (- 29%) in bandwidth occurs. 

Bandwidth increases in single or few-turn coils are further enhanced by increasing the 

eccentricity of the coil cross section. Using the delta function response model, a two-turn 

coil will exhibit a 13% increase in bandwidth. These bandwidth deviations become less 

significant as the number of coil turns increases, regardless of the coil configuration. For 

multiturn coils with N L 10, all fiber sensor bandwidths converge to that of the simple 

circular, centered coil, Eq. (5-7). This simplifies current sensor coil design, especially 

for those applications where the frequency range of interest lies below the main lobe 

3 dB bandwidth. 

The travelling wave configurations show that increases in bandwidth are possible 

for fiber current sensors without a loss in detection sensitivity. By distributing the fiber 

coil and slowing the propagation of the magnetic wave, improved phase matching occurs. 

Bandwidth enhancement is a function of the helical coil diameter-to-pitch ratio and the 

relative permittivity of the transmission line dielectric. Under ideal conditions, a 

configuration exists where, theoretically, a near-infinite bandwidth could occur. 

Realistically, such a large bandwidth is not possible, but enhancement factors of 

approximately 10 (compared to an equivalent planar coil) appear achievable. 

' Transmission test cells filled with liquid provided the slow-wave structures for 

travelling wave sensor experimental measurements. Liquids were chosen as coaxial line 

189 



dielectrics because they have large relative permittivities and can easily fill the volume of 

the cell around the fiber sensor. However, liquids also exhibit significant dielectric 

dispersion at the higher frequencies [71] and require other structures to support the fiber 

coil within the cell. These properties can severely limit the system bandwidth. Extended 

mathematical models of the travelling wave current sensor have been developed that 

account for many of the properties of the transmission cell structures [75]. In addition to 

liquid dispersion, the models include waveguide dispersion of the lowest-order TM mode 

in the transmission line, an effective relative permittivity due to the teflon support 

structures, and effects from excess lead length used in a non-travelling configuration. 

The models only consider a single EM mode in the coaxial line and assume that mode 

has quasi-TEM characteristics. In most cases the extended models showed excellent 

agreement with the experimental results. 

Three liquids - 1-propanol, methanol and water - were used in the test cells. 

Their progressively larger relative permittivities - 20.1, 32.6, and 78.5, respectively at 

25°C - created sensor systems with increasingly larger bandwidth for a given helical 

coil structure. Comparative tests with a helical coil in a coaxial airline indicated that 

merely distributing the coil provides minimal bandwidth enhancement (maximum of 

1.37); slow-wave mechanisms are needed for further phase matching. The largest 

bandwidth recorded during experimentation was approximately 300 MHz for a water- 

filled cell and a 14-turn helical fiber coil with 3 cm diameter and 3 cm pitch. This sensor 

has a bandwidth enhancement factor of - 4.1 when compared to a 16turn, 3 cm planar 

coil. Its estimated sensitivity-bandwidth product is 1.06 MHz-"/A, the largest SBP 

measured to date for a fiber current sensor. 

Models of the travelling wave fiber sensor configurations predict that high 

frequency response will be limited in liquid-filled devices. Large bandwidth 

enhancements or higher frequency operation will require solid dielectric slow-wave 

structures in combination with annealed fiber coils or helical waveguides. Predictions 
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for such systems indicate that bandwidths greater than 2 GHz and SBPs greater than 100 

MHz-O/A are possible. In addition to enhanced performance, these devices will also 

significantly reduce sensor size. Other non-fiber travelling wave sensor configurations 

may ultimately prove to be more sensitive in given current monitoring applications. A 

proposed planar waveguide travelling wave sensor fabricated in an RF stripline shows 

excellent response potential. With proper selection of Faraday rotator materials for the 

waveguide and with optimum serpentine path design, enhanced high frequency operation 

is predicted well into the microwave region with SBPs as large as 200 MHz-O/A. 

In summary, this work has explored the theoretical and experimental high 

frequency characteristics of Faraday effect fiber current sensors. Detailed quantitative 

analyses of the frequency responses of planar and travelling wave sensor configurations 

are now possible. High frequency response functions depend on several properties of the 

fiber coil and the transmission medium surrounding the coil. Sensor bandwidth can be 

enhanced through careful travelling wave fiber design or through selected use of few-turn 

noncentered and elongated fiber coils. Narrowband, high frequency resonant 

enhancement is produced through proper design with the noncentered or noncircular 

fiber coils. Measurements have been performed at frequencies that extend into the 

microwave region with 1 GHz being the maximum used. All of the experiments explore 

high frequency regions (usually above the 3 dB bandwidth) not previously considered for 

sensitive, Faraday effect fiber current sensors. Many of the sensors show adequate S/N 

and characterizable responses in these regions. Models of the sensor systems have 

allowed further investigations of potential response in these high frequency regions. 

Thus, it appears feasible to fabricate current sensors from optical fibers (or optical 

waveguides) that have a wider bandwidth or higher frequency detection capability than 

conventional current probes. 
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APPENDIX A 

EXPANDED COAXIAL TRANSMISSION CELLS 

Expanded coaxial transmission cells have been developed to provide a known 

electromagnetic environment for the testing of optical fiber current sensor coils [34]. 

These structures are the coaxial analog to the rectangular transverse electromagnetic 

(TEM) cells that are used extensively in RF testing [78,79]. Large working volumes are 

characteristic of the transmission cells, able to contain sizable test objects with minimal 

perturbation of the impinging TEM wave. The coaxial cell geometry is ideal for 

experimentation with optical fiber coils that measure conducted RF currents; the known 

modal properties and impedances make it easy to relate current to power at frequencies 

well into the microwave region. 

Coaxial Line ProDerties 

The waveguide theory for an ideal coaxial cable is well developed [73,80], but it 

is repeated in a brief format here to highlight some of the useful properties and to provide 

a reference for later theoretical developments. 

The fields inside the dielectric medium of a coaxial line (see Fig. A-1) with center 

conductor radius p = a and outer conductor radius p = b can be divided into transverse 

magnetic (TM) and transverse electric (TE) components. The TM components of the 

electric and magnetic field are given by 

(A- 1 a) 

A-J,,,(up) + cos(m4) , (A-lb) j m e  E,, = --[ jk2 a 
H@ = P P a  ap 

and 
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(A-lc) joe: m P  
P P 

E, = --Hp = -[A J,(uP) + BY,(up)]sin(m+) . 

(A-2a) 

a 
P aP 

Eg = -- jwpHp = jl(o[C--J,(up) + cos(m$) , (A-2b) 

and 

* j w E, = mp[CJ,(up) + DY,(up)]sin(m$) . 
P H, - p (A-2~) 

Fig. A-1. The geometry of a coaxial transmission line. A dielectric medium with 
permeability p and permittivity E fills the volume between cylindrical conductors of 
radius a and b. The cylindrical coordinates (p, 4, z) as indicated are used for 
computations. 
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For brevity, the common phase factor e-pz + Jot is omitted from all the components in 

Eqs. (A-1) and (A-2). Here 

with 

and p the wave propagation constant. The coefficients A, B, C, and D are arbitrary 

constants, and J,(up) and Y,(up) are Bessel functions of order m of the first and second 

kind, respectively. If the coax has infinitely conducting walls, the tangential components 

of the electric field vanish at both p = a and p = b. This leads to two eigenvalue 

equations describing the TM and TE modes: 

for the TM modes, and 

(A-5) 

for the TE modes. The primes in Eq. (A-6) denote differentiation with respect to p. 

The lowest order mode in the ideal coaxial line is both TE and TM or TEM; this 

requires that E, = H, = 0 for all p. Using Eqs. (A-la) and (A-2a), these conditions are 

satisfied only if u2 = 0. Then p = jk, and the TEM wave propagates with a phase velocity 

given by 

(A-7) 
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which is the speed of light in the dielectric medium. The TEM mode is azimuthally 

symmetric (m = 0). and its two transverse field components can be derived from Eq. (A- 

lb). They are given by 

where 

(A-8) 

(A-9) 

is the wave impedance and i is the conducted current. The characteristic impedance of 

the TEM mode is 

Z, = -In(%) 11 , 

2 n  
(A-10) 

For a dielectric medium containing no magnetic materials, p = p,, and with a relative 

permittivity, E, = E/&,, Eq. (A-10) becomes 

60 Z, = --In(%) . JEr (A- 1 1) 

Equations (A-5) and (A-6) provide for an infinite number of real solutions for u 

for a given order m of the Bessel functions. The propagation constants identifying these 

modes are given by 

- j,/- , m = 0,1,2 ,... , n = 1,2,3 ,... . (A- 12) 
Pmn - 

These satisfy the condition that p’ e 0 for all propagating modes within the coaxial line. 
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The second lowest mode in the typical ideal coaxial line is the TE,, mode. It has an 

approximate cutoff frequency described by [80] 

(A-13) 

for a dielectric with p = p,,. Equation (A-13) approximates the cutoff at a point where 

the modulation half-wavelength equals the circumference of a circle midway between 

p = aand p = b. 

Coaxial transmission lines experience some attenuation due to conductor and 

dielectric losses. Contrary to the boundary condition originally stated, the metal coax 

walls are not infinitely conducting, but have a conductivity, 0. The propagating wave 

penetrates into the conductors as defined by the skin depth 

6’= /$ . 

The conductor losses of the coaxial line given in dB per unit length are [80] 

a, = 13.6--(1 S’p 1 + --)m b &  * 
h b  

(A-14) 

(A- 15) 

where h is the free space wavelength. 

Dielectric losses arise from the finite time of molecular reorientation in the 

insulating materials [71]. Absorption is treated mathematically by assuming a complex 

relative permittivity 

E, = E’ + jE”  . (A-16) 
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Since the waveguide propagation constant is expressed as 

P=jk=jofi, (A- 17) 

an attenuation factor results from the imaginary part of k, while the real component gives 

rise to the material dispersion. An expression for the dielectric loss given in dB per unit 

length is [80] 

or, = 2 7 . 3 L t a n 6  & , 
h 

where 
E tan6 = - 
Et  

(A- 18) 

(A-19) 

is the loss tangent published in the handbooks for many dielectric materials. 

Another useful property of coaxial lines is the maximum power-handling 

capability. This property is based on the dielectric standoff or breakdown electric field, 

E,,,. The maximum power, in Watts, is given by 

(A-20) 

As a reference, the breakdown electric field for air is - 30 kV/cm. 

Coaxial Airlines 

The design of expanded coaxial airlines is straightforward; most are intended for 

use with 50 i2 RF test instrumentation. If Z, = 50 is substituted into Eq. (A-1 l), the 

airline design requires that b/a = 2.301. Equation (A-13) for the higher order mode 
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(HOM) cutoff frequency then simplifies to fc = 2.89/a GHz, if the center conductor radius 

is given in cm. For a desired HOM cutoff frequency in the cell design, the remaining 

geometric parameters can be determined. If a given working volume size is desired for 

testing a fiber coil, the TEM mode parameters can be computed. 

A transition region in the cells is necessary to expand the radial dimensions from 

the input and output connectors to a reasonably large working volume. This is 

accomplished using tapered conical conducting sections. Conical launchers for coaxial 

transmission lines are common, and the impedance and field matching conditions 

required for geometrical transitions have been well studied [81]. The characteristic line 

impedance for the TEM mode in the tapered section is given by 

(A-21) 

where 8, and 8, are the taper angles of the center and outer conductors. If the angles are 

kept small, Eq. (A-21) reduces to Eq. (A-10) for a coaxial line of the appropriate 

geometry. Subsequently, cell design can be simplified by allowing the conductor radii 

ratio to be 2.3 throughout the cell length, even in the conical region. For an airline, this 

cylindrical-geometry-only approach can be used quite effectively to large taper angles. If 

8, does not exceed 4 5 O ,  the characteristic impedance of the conical transition deviates 

less than 5% from 50 S Z .  

Long tapered transition regions for the coaxial cells ensure good impedance 

matching in the lines; however, all field disturbances cannot be avoided at the 

geometrical discontinuities. At the discontinuities, the spherical wavefront of the conical 

section must make the transition to the cylindrical wavefront (planar) of the coax 

section [81]. Cell higher order modes are excited at the discontinuities, but they are 
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evanescent, carrying no energy and dying out rapidly. Attenuation to HOM propagation 

at the frequencies, f, near cutoff is given in dB per unit length by [80] 

2 
= 54.6 ",/ 1 - (x) . a m  

C 
(A-22) 

The effective cell bandwidths and the proximity of the fiber optic test coils in the 

working volume to the transition discontinuities can be determined from Eq. (A-22). 

Three expanded airlines were designed and fabricated for testing of fiber current 

sensor coils. Table A-1 gives the dimensions and the HOM cutoff frequency for each 

airline. Each cell was machined from brass because of its workability, high electrical 

conductivity, and its relatively high chemical resistance. The cells were disassembled at 

mating joints for ease of placement of the fiber coils in the working volume. 

Polyurethane foam was used for all supports inside the cells, including most of the 

mandrels onto which the optical fiber coils were wound. The relative permittivity of the 

foam is - 1.15, which can perturb the cell impedance as much as 4.5 from its 

nominally 50 51 value. Use of the foam supports was thus limited to absolute minimum 

for operation. 

All losses in the coaxial airlines are quite small: dielectric loss is insignificant, 

and the conductor loss for the brass in dB per unit length is 

JT a, = 2.25 x10'* - . 
b 

(A-23) 

For a frequency of 1 GHz and a minimum value of b = 0.49 cm at the cell connector 

transitions, this attenuation is only 0.0015 dB/cm. The maximum power handling 

capability of the airlines is P,,, = 2.36 b2 Megawatts if b is expressed in cm. Again for 

the minimum value of b at the connector transitions, P,, > 500 kW. 
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The airline cell working volumes are of sufficient length to allow HOMs created 

at the transition discontinuities to be well damped. For the existing designs, Eq. (A-22) 

Cell Property 

Cell outer dimensions 

Total length 

Cell Diameter 

Table A-1. 

Expanded Coaxial Airline Cells 

Cell #1 Cell #2 Cell #3 
[ dimensions given in inches and (cm) ] 

18.000 (45.72) 24.000 (60.96) 6.000 (15.24) 

5.500 (13.97) 2.500 (6.35) 1.300 (3.30) 

Outer conductor dimensions 

Center section length 6.000 (15.24) 18.000 (45.72) 4.820 (12.24) 

Center section diameter 5.240 (13.31) 2.260 (5.74) 0.384 (0.98) 

End section length 5.410 (13.74) 2.410 (6.12) 

End section diameter at connector 0.384 (0.98) 0.384 (0.98) 

End section taper angle 23.63 O no taper 26.86 O 

Inner conductor dimensions 

Center section length 6.000 (15.24) 18.000 (45.72) 4.820 (12.24) 

Center section diameter 2.280 (5.79) 0.980 (2.49) 0.167 (0.42) 

End section length 5.410 (13.74) 2.410 (6.12) 

End section diameter at connector 0.167 (0.42) 0.167 (0.42) 

End section taper angle 12.28 O 10.64 O no taper 

HOM cutoff freauency 1.00 GHz 2.32GHz 13.65 GHz 
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becomes 

(A-24) 

with dimensions of dB per unit length. For the largest outer conductor radius, b = 6.66 

cm, evanescent modes are attenuated 1.2 dB/cm at a frequency, f = 0.75 f,. Depending 

on the perturbations created by the fiber coils inside the cell, operations to greater than 

80% of the HOM cutoff frequency are predicted for all airlines. 

The exact, useful operating ranges are established through experimental 

performance verification. Part of the evaluation criteria comes through measurement of 

basic properties of the cell using automatic network analysis. The transmission (S2,) and 

reflection ( S , , )  scattering parameters, both magnitude and phase, are collected for the 

cells in their final configurations. Along with these parameters the standing wave ratio 

(SWR) and the device impedance are computed from 

and 

(A-25) 

(A-26) 

where Z, Z,, and S,, are complex quantities. Ample information is provided from these 

electromagnetic characterizations to determine the range of useful frequencies for the 

testing of fiber sensor coils. 
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APPENDIX B 

EXACT TREATMENT OF FIBER COIL LEADS 

The fiber leads on a Faraday effect current sensor coil can significantly change 

the high frequency characteristics of the sensor response function. Each lead adds to the 

total fiber length in the coil, reducing the sensor bandwidth. More importantly, the 

position of the fiber leads creates a complex phase interaction between the propagating 

light in the fiber and the oscillating magnetic field signal. This produces deviations in 

the Faraday rotation from the simple response function for the centered, circular coil as 

described by Eq. (5-2). 

Lead Effect Model 

A simple model for a fiber coil lead is developed to allow for an analytical 

investigation of the effect on sensor response. As illustrated in Fig. B-1, the coil lead is 

treated as a constant radius arc of optical fiber originating a distance X from the coil edge 

and ending at a point on the coil proper tangent to its curvature. Beyond the distance X, 

the fiber lead is assumed perpendicular to the magnetic field and no Faraday interaction 

occurs (B - dl = 0). The formulation in chapter 3 is used to derive the frequency 

dependent Faraday rotation for the fiber lead, O,(o). Starting with Eq. (3-4), the angle w 
is set to zero and integration occurs only over the fiber lead length, e, ,  the distance 

between points 0 and 1 in Fig. B-1. The Faraday rotation is then 

Since both y and r depend on the position of the light in the fiber lead, both remain as 

part of the integrand. Changing the integral to one over time yields the expression 
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where t, is the light transit time through the lead section. 

From the geometry in Fig. B-1, the following properties are derived: 

y = a ’ +  p’ , (B-3) 

(B-4) R1 sina’ = - sinp’ , r 

/ 3 
NTurn  
Fiber Coil 

Fig. B-1. A geometrical model of the fiber leads on a current sensor coil. 
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+ x  9 

X2 
Rl = 

and 

=. . - I (  I +  7& ) . 
+ %R 

Pdax 

The relationships between the angles and the light propagation times are 

and 
C 

P’(t> = - ( t l  - t) 
nR1 

. 

A time dependent function for r is constructed from Eqs. (B-5) and (B-9): 

r(t) = \I (R + R,)2 + R: - 2R,(R + R , ) c o s [ ~  (tl - t)] . (B-10) 
*R1 

A similar expression for y is derived from Eqs. (B-3), (B-4), (B-5) and (B-9): 

C + - (tl - t) . 
nR1 1 (B- 11) 

(R + R1)* + R: - 2R1 (R + R1) c o s [ c  (tl - t)] 
nR1  

y(t> = sin-’ 

The exact coil lead Faraday rotation is found by substituting Eqs. (B-10) and (B-11) into 

Eq. (B-2). This final expression is 
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dt , -jot e 

0 

where 

and 

A, = (R + R,), + Rf , 

A, = 2R,(R + R1) . 

(€3-12a) 

(B- 12b) 

(B-12~) 

Equations (B- 12) must be integrated numerically to find the solution. 

Input and output leads contribute differently to the Faraday interaction, although 

each can be treated with similar mathematics. Two fiber coil lead configurations have 

been used in this study, and both can be visualized using the layout shown in Fig. B-1. 

In the first configuration, the light in the fiber propagates through the input lead from 

position 0 to position 1, through an input transition section to position 2, around (N - %) 

coil turns to position 3, through an output transition section to position 4, and finally 

along an output lead to position 5. Light propagation in the second configuration differs 

only in that it passes through a complete N coil turns between positions 2 and 3. This 

means that positions 2 and 3 are coincident on the coil and the output fiber lead exits to 

the right of the coil in Fig. B-1, opposite that of the input lead. The interaction of the 

magnetic field with the light as it passes through the output transition section and output 

lead is identical for the two configurations except for a phase delay created by the extra 

half turn in the second configuration. 

In the mathematical model, Eq. (B-12) describes the Faraday rotation for the 

input lead. A similar expression integrating from t4 to t, (propagation times 
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corresponding to light at positions 4 and 5 in Fig. B-1) describes the rotation for the 

output lead: 

sin-’ 
t - t4) 1 7  

t4  1 1 
*4 

Between positions 1 and 4, the fiber follows the constant radius path of the coil proper. 

The expression for the rotation in this coil section then follows directly from Eqs. (5-1) 

and (5-2) and is given by 

In general, the rotation expressed in Eq. (B-14) can be treated as a single quantity as 

shown. However, in some configurations it may be necessary to break out the rotation 

into constituent components @,(a), @,(a), and @,(a), with corresponding separation in 

the time intervals (b - t,), (6 - b), and (t4 - 6). One such configuration is the travelling 

wave fiber design where the coil proper and the lead transition sections may differ. The 

critical times corresponding to positions 1 through 4 shown in Fig. B-1 can be found 

from the associated geometries. These are expressed by 

t2 - t l  = t4 - t3 = --p;= nR 7 

C 
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and 

03-16) 

The choice of the coil turn factor (N - 

coil configuration. 

or N) in Eq. (B-16) is dependent on the desired 

The time dependent expressions Eqs. (B-12), (B-13) and (B-14) are added to 

determine the total Faraday rotation as the light propagates from one end of the fiber 

sensor to the other. Since the complete model consists of several integral and nonintegral 

expressions, each for a distinct section of the coil, care must be taken to properly 

normalize to the low frequency response. In its final form the description of the relative 

Faraday rotation for the entire sensor is 

O(0)  
0 0  

O,(0) + (02(0) + ...) + e&) 
O,(O) + (O2(0) + ...) + O,(O) 

- -  - (B- 17) 

Appropriate use of Eq. (B-14) or the constituent rotations is determined by the selected 

sensor configuration. 

Model Results and Comparisons 

The effects of fiber leads on the high frequency Faraday response of current 

sensor coils is dependent on the number of turns in the coil. Perturbations are at a 

maximum for a single turn coil, with effects diminishing as N becomes larger. Plotted in 

Fig. B-2 are the relative magnitudes of the Faraday rotation for one turn coils with the 

two lead configurations described previously. Lead distance is X = R. The resulting lead 

length is such that its radius of curvature is R, = l S R ,  which satisfies a condition that 
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bends in the lead not produce a linear birefringence per unit length greater than that of 

the bends in the coil. 

Curve (a) in Fig. B-2 is the frequency response for a coil with leads entering and 

exiting from the same side. This configuration is simply a single loop around the 

conductor. Its response matches closely that of the one turn leadless, centered and 

circular coil. The cutoff frequency is identical, but the 3 dB bandwidth is reduced 

slightly, approximately 1.5%. A noticeable reduction in peak magnitude of the second 

response lobe (near a d 2  = 1 . 5 ~ )  is observed when the lead effects are included. This 

loss of response becomes more pronounced for each successively higher frequency lobe 

n 
3 
0 
W 

1 .o 
X = R  

0.8- - 
(dash) Leadless Coil, N= 1.5 - 
(dot) Leadless Coil, N = l  

0.6- - 

0.4- 

0.2- 

0.0 . I 

7r 

Normalized Frequency, 07/2 

I 

27T 

Fig. B-2. The predicted frequency response for a single turn Faraday effect fiber current 
sensor with (a) input and output leads exiting from the same side of the coil and (b) the 
input and output leads exiting in opposite directions (equivalent to 1.5 coil turns). 
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(not displayed in Fig. B-2), indicating that magnetic field phasing with the light 

propagating in the coil leads becomes much more important as frequency increases. As 

the number of turns in the coil is increased, the leads are less of a perturbation to the 

system frequency response. For as few as three coil turns, the bandwidth and secondary 

lobe magnitudes are predicted to be essentially the same as those for the leadless coil. 

Curve (b) in Fig. B-2 is the response for a single loop sensor with the fiber leads 

exiting the coil in opposite directions. This configuration has an effective 1.5 coil turns, 

thus making the bandwidth for curve (b) much smaller than for curve (a). The 

magnitude of the frequency response for curve (b) can be predicted quite well using Eq. 

(5-3) for a centered, circular coil with N = 1.5 (see the comparison in Fig. B-2). 

Deviations in response between the leadless coil and the coil with leads occur only near 

the frequency peaks of the secondary lobes where a loss in magnitude is observed. 

Again, as the number of coil turns increases, this lead-induced response loss diminishes 

rapidly. However, it is necessary to include the extra half turn of fiber length when 

predicting frequency response for coils with this lead configuration remains unless N is 

an extremely large number. This is evident in comparing the measured and predicted 

values in Fig. 5-2 where N = 10. 

In addition to the magnitude predictions, phase angle deviations are also 

considered in the lead effect model. For both configurations investigated, the coil leads 

add some length to the total fiber required in sensor fabrication. Thus, a propagation 

phase delay, compared to the leadless coil, is produced due to the slightly longer light 

transit time. This phase delay as a function of frequency follows exactly that given by 

Eq. (5-4) for the appropriate value of 2. 

The actual length of the fiber coil leads can have an impact on the Faraday 

frequency response. This is shown in Fig. B-3 for a single turn coil with leads exiting 

from the same side of the coil and with X = 10R. Note that the added fiber length in the 

leads results in a loss of 3 dB bandwidth, but that the cutoff frequency of the curve is 
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Fig. B-3. The effect of lead length on the relative response magnitude of a single turn 
fiber current sensor. 

shifted to a higher value than that for the leadless coil. This feature occurs because light 

propagating in the fiber lead experiences a much weaker Faraday interaction - the angle 

y is large when X is large - than in the coil proper. At the low frequencies where the 

magnetic field polarization is changing slowly, the entire fiber length, including the long 

leads, contributes to the response. But at the higher frequencies (0212 > 0.6n), where the 

magnetic field wavelength is approximately the same as the length of the fiber in the 

leadless coil, the leads contribute less to the total response and an effective shortening of 

the interaction length results. The decreasing dB and increasing f, continues to occur for 

the single turn coil as more length is added to the leads. Eventually, the leads become so 

long that total Faraday interaction in them is comparatively weak. At that point the 
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model begins to exhibit anomalous results due to the segmented mathematical treatment 

of the different fiber sections. All of the predicted response then derives from the 

remaining half-turn of the coil proper, with non-interactive delays due to the leads; a 

delta function-type response results. 

If the model allowed, it would be of theoretical interest to explore more fully the 

extreme limit, X + 03, for the long leads on a single turn fiber current sensor coil. In 

experimental coils, however, such long lead lengths are simply not practical, especially if 

the stringent fiber geometries are followed as required by the model. True interaction 

lengths in the coil leads will always be significantly shorter. Thus, frequency response 

shifts due to long fiber leads are not expected to be greater than those shown in Fig. B-3 

for X = 10R. And, as mentioned previously, the lead effects become less pronounced as 

the number of turns in the fiber coil increases. For N 2 10, the Faraday response can be 

predicted quite precisely by the leadless coil model, regardless of the fiber coil lead 

lengths. 
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APPENDIX C 

DERIVATION OF EFFECTIVE RELATIVE PERMlTTIWW 

The cross sectional geometry of the multilayer dielectric coaxial line is defined by 

Fig. C-1. Inner conductor radius is 'a', outer conductor radius is 'b', and the dielectric 

transitions occur at r, and r,. The relative permittivities at radii p are given as E, for a e 

p e r, and r2 e p e b, and ~2 for r, e p e r2. At low frequencies, the fields in all the 

dielectric regions are assumed to be TEM. The radial electric field between a and b then 

has a l/p dependency so that in medium 1, E, = C,/p, and in medium 2, E, = C,/p, where 

Fig. C-1. Cross section of the multilayer dielectric coaxial line. A medium with 
relative permittivity ~2 is surrounded by a medium of relative permittivity E,. Coax 
conductors are defined by inner radius a and outer radius b. 
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C, and C, are constants. An equivalent effective (homogeneous) medium is defined 

throughout the dielectric region such that E,, = C,/p for a < p < b. The electric field is 

assumed to vanish at the conductor walls (Q = -), and the boundary condition D, n = 

D, n is applied at r, and r,. An effective displacement vector, D,, is defined so that in 

the coaxial dielectric volume their exists an equivalent medium with relative permittivity, 

and De, = Eeff 

The voltage between the conductors in the coaxial cell is found from the line 

integral over the radial component of the electric field, 

It follows then that 

and equivalently 

Equation (C-2) reduces to 

To solve Eq. (C-3), the boundary condition at the dielectric interface is applied so that 
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Then substituting for E, and E, in Eq. (C-3), 

This integral expression has the solution 

Equation (C-7) can be further reduced to 

Combining Eqs. (C-4) and (C-8) gives 

or 

- ceff = [ 1  + (2-1) l n r , )  1 .  
Cl h(%) 

The energy density in the dielectric of the coaxial line is given by 

- -  dW - -(D*E) 1 , 
d"0 2 

(C-10) 

(C- 1 1) 
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which becomes '/z &E2 for a TEM mode. The total energy per unit length is found by 

integrating Eq. (C- 1 1)  over a given planar surface, S ,  in the coaxial line dielectric region. 

E = L E [  E 2 d A .  
dz 2 

S 

(C- 12) 

Here dA = p dp d@. The electric field for the TEM mode is azimuthally symmetric (no t$ 

dependency). Then for a radially dependent electric field in a homogeneous dielectric 

with an effective relative permittivity, Eq. (C-12) becomes 

which has a solution of 

(C- 13) 

(C- 14) 

Equivalently, Eq. (C-12) can be broken into its constituent integrals for each of the three 

radial dielectric regions: 

(C-15) 

where Eq. (C-5) has been applied in the second dielectric. Then 

(C- 16) 
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This further reduces to 

Combining Eqs. (C-14) and C-17) leads to 

(C-17) 

(C- 18) 

Finally, an effective relative permittivity results by substituting cefi/C, from Eq. 

(C- 10) into Eq. (C- 18). This gives 

-1 

(C- 19) 

The ratio of the effective relative permittivity to the relative permittivity of medium 1 is 

dependent only on the geometry of the coaxial line and the ratio of the two media relative 

permittivities. If medium 2 is very thin so that r, = r,, or if the two dielectrics have 

approximately the same relative permittivities, E, k: Q, then sen + E, in m. (C-19) as 

expected. And if medium 2 is large so that it nearly fills the entire volume of the coaxial 

line, then rl = a, r, k: b and Eeff + %. 
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APPENDIX D 

WAVEGUIDE MODES FOR AZIMUTHALLY SYMMETRIC 

FIELDS IN A MULTILAYER COAXIAL TRANSMISSION 

LINE WITH COMPLEX RELATIVE PERMITTIVITY 

In these discussions the waveguide geometry and material dielectric properties for 

the coaxial line are taken as described in Appendix C and as illustrated in Fig. C-1. 
Material wave parameters kl,2 = (o/c)& and the waveguide propagation constant, p,,,,, 

as given by Eq. (A-8), are all treated as complex quantities. Due to the added dielectric, 

medium 2, the electric and magnetic field components in all the coaxial dielectric layers 

may, in general, bc coupled together, and defining strictly TE and TM modes as in the 

simple (single dielectric) coaxial line is not appropriate. The treatment of this coupled 

mode problem is quite involved mathematically, and thus a complete description of the 

transmission cell higher order modes is not attempted here. Instead, azimuthal symmetry 

(m = 0) is assumed, the field components become uncoupled, and TE and TM modes can 

be derived separately. The waveguide propagation constants, p,, for each of the modes 

then takes on the simpler form, Pori. The derivation of the modal eigenvalue equations in 

the following discussions is adapted from Wait [73]. 

TMh Modes 

If m = 0 in Eqs. (A-1), E, and H, vanish and the remaining field components E,, 

H, and E, are sufficient to describe the TM fields in each coaxial layer. In the region 

defined by a < p < rl, the TM field components are given by 

(D- 1 a) 
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and 

Here 
U: = k: + p2 . 

(D-lb) 

(D-lc) 

In Eqs. (D-1) and (D-2), u, and p are both multivalued parameters - u,,~,, and Po,, for n = 

1, 2, 3... - due to the waveguide modal structure. For simplicity in these derivations, 

the modal subscripts 'On' are dropped from u and p, and the remaining numerical 

subscripts refer only to the dielectric region they represent. 

In the region defined by r2 < p < b, the field components E,,, H,, and E,, will be 

identical to those described in Eqs. (D-1) only with A, and B, replaced with A, and B,. 

For r, < p < r27 the TM field components are 

and 

with 
ui = ki + p2 . 03-4) 

The metal walls of the coaxial line are considered to be infinitely conducting so 

that E, vanishes at p = a and p = b. Then 
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and 

At the dielectric interfaces p = rl and p = r2, the tangential components, E, and H, are 

continuous. At p = rl, this leads to 

and 

In Eq. (D-8), the property of the Bessel function 

has been applied. Equation (D-8) is divided by Q. (D-7), and A,/B, is replaced by its 

equivalent form from Eq. (D-5). The following expression results. 

(D-10) 
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Solving for A2/B2 gives 

where x1 is the bracketed factor on the left side of Eq. (D-10) and is given by 

(D-12) 

At the second dielectric interface, p = r2, a similar expression for A2/B2 is 

derived. It is given by 

where 

(D- 13) 

Combining Eqs. (D- 11) and (D- 13) gives a final transcendental eigenvalue equation for 

the TM,, modes, 
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(D- 15) 

with x1 and x2 given by Eqs. (D-12) and (D-14). 

T b  Modes 

In a fashion similar to the TM,, mode derivations, the TE, modes of the 

waveguide are found from Eqs. (A-2) with m = 0. In the dielectric region defined by E,, 

the field components are given by 

HZ1.3 = ’: [‘1,3 JO(ulp) + D1.3 yO(ulp)] 9 
(D- 16a) 

(D- 16b) 

and 

where the subscript 1 applies for a < p < rl and the subscript 3 applies for r2 < p < b. The 

TE field components for rl < p < r2, where the relative permittivity is Q, are given by 

and 

(D- 17 b) 

(D- 1 7 ~ )  
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Again the Bessel function property, Eq. (D-9), can be applied to Eqs. (D-l6b), (D-16c), 

(D-l7b), and (D-17c). 

At the infinitely conducting metal walls, the tangential E component must vanish. 

For these TE modes, E,= 0 at both p = a and p = b. Then 

and 

(D-18) 

@- 19) 

At p = rl, the tangential components E, and H, are continuous across the dielectric 

interface. Thus, for H,, 

and for E,, 

L i i g  Eq. (D-18) to eliminate C,/D,, anc dividing Eq. (D-21) by Eq. (D-20) yields 

Then solving for C,/D, gives 
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where Z, is the factor in the brackets on the left side of Eq. (D-22) and is given by 

(D-23) 

(D-24) 

At the second dielectric interface, p = rz, the tangential field components are also 

continuous, which leads to a similar expression for Cz/Dz given by 

L -  - 1 

where 

(D-25) 

(D-26) 

Equations (D-23) and (D-24) are combined to give the transcendental eigenvalue 

equation for the TE,, modes, 
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where Z, and Z, are presented in Eqs. (D-24) and (D-26). 

Modal Solutions 

Solutions to Eqs. (D-15) and @-27) that lead to guided propagating modes 

require that p be imaginary and thus p2 e 0. In the frequency regions where p2 > 0, 

modes experience attenuation only and thus die out rapidly. The cutoff frequency, a,, is 

defined as that frequency above which free wave propagation occurs and below which 

only modal attenuation occurs. In this multilayer dielectric waveguide where relative 

permittivities can be complex, modal solutions for p are also complex, having both real 

and imaginary components, when o > 0,. Field waves are then freely propagating yet 

attenuated. 

As discussed in Appendix A, a TEM mode can exist in a waveguide structure 

only if E, and H, both equal zero for all values of p. Then Eqs. (D-la) and (D-3a) must 

be simultaneously zero at p = rl,  as will Eqs. (D-16a) and (D-17a). Similar sets of 

equations can be identified for the p = r2 interface. Using the TM,, mode equations, Eqs. 

(D-la) and (D-3a) at p = rl, as a baseline to illustrate the situation, the following 

expressions result: 

and 

(D-28) 

Solutions to these equations require that u1 = 0 and u2 = 0. But since k, f k2, except 

when the two dielectrics are identical, a contradiction exists for the multilayer media. 

Thus, no TEM mode is possible. If the static values of the material relative permittivities 

are such that E ,  > ~ 2 ,  then the TMol mode is of lowest order for this coaxial transmission 

line structure. This mode exists at all frequencies and is cutoff only at o = 0. 
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GLOSSARY OF SPECIAL SYMBOLS AND TERMS 

a 

2 
C 

d 
d/x, 
dW/dV, 
dW/dz 

z 
fc 
f co 
fR 

ii 

, 

i 

ldet 

k 
k 
kl.2 
b 
1 
1 
e 
PI 
m 
m’ 
n 
n 
r 
r,,, 
rf 

t 

t 
a,b 

fo,1,2,... 

u 

u1,2 

%ln 

V 

Vf 

radius of coaxial transmission line inner (center) conductor 
radial distance from coaxial line axis to nearest point on fiber segment 
radius of coaxial line outer conductor 
speed of light in vacuum 
diameter of fiber coil 
ratio of diameter to pitch of helical fiber coil 
energy density for coaxial line dielectric 
total energy per unit length along axis in a coaxial line dielectric 
magnitude of the electric charge 
modulation frequency 
cutoff frequency of higher order modes in coaxial transmission lines 
cutoff frequency (first null) in optical fiber sensor response 
resonance center frequency 
fiber twist material parameter 
half-height of rectangular coil 
static or steady state current amplitude in a conductor 
average optical detector output current 
d-1 
electromagnetic wave vector 
wave propagation parameter (general) 
wave parameter for dielectric regions 1, 2 
Boltzmann’s constant 
fiber length variable (general) 
length vector 
short fiber or optical material length (usually less than one turn) 
length of fiber lead 
integer counter for series, azimuthal mode number in coaxial transmission line 
integer counter for response resonances 
fiber refractive index 
surface normal vector 
radial distance from conductor axis to fiber axis 
inner, outer radius of fiber mandrel, radii at dielectric transitions 

fiber radius 
time variable (general) 
time at points a, b on a short circular fiber loop 
time or time delay at designated points: starting or reference, 1, 2,. . . in a fiber 
coil or lead 
Bessel function wave number, u2 = k2 + p2 
Bessel function wave number for dielectric regions 1, 2 
Bessel function wave number for the mnth coaxial waveguide mode 
velocity variable (general) 
velocity of light in fiber 

234 



“light 
“ph 
W 

x, 

Z 

AJkCD 
44 
&I 
A 1,x3 

B 1,2,3 
c 1,2,3 

D 1,x3 

B 

&I 
Gf 

D 
D 1.2 
D eff 

E 
E 1.2 

k, 
E 

P.9.Z 

E Pl,PLP3 

E Ql,QW3 

E zl .z2,z3 

Eeff, Ed 

Enl 

F 
H 

HP,$,Z 
H ~1,~2,p3 

H 6w,43 

H zl,z2,23 

H sat 
I 

IO 
Jcl 

velocity of light in a planar waveguide 
phase velocity of EM wave in transmission line 
half width of rectangular coil 
pitch of helical fiber coil 
axial length dimension in cylindrical coordinates, length along coaxial 
transmission line 
axial unit vector in cylindrical coordinate 

integration constants used with electric and magnetic field components 
amplitude of propagating EM wave in a coaxial line 
initial amplitude of EM wave 
constant in dielectric regions 1, 2, and 3 
constant in dielectric regions 1, 2, and 3 
constant in dielectric regions 1, 2, and 3 
constant in dielectric regions 1, 2, and 3 
magnetic flux density vector 
static or low frequency magnetic flux density 
integration constant used in determining effective parameters for multilayer 
dielectrics 
displacement vector (general) 
displacement vector for dielectric regions 1 and 2 
effective displacement vector for the multilayer dielectric material 
electric field vector (general) 
electric field components for dielectric regions 1 and 2; they may have arbitrary 
direction 
complex electric field amplitude components for light in fiber 
electric field components in a coaxial line (cylindrical coordinates) 
radial electric field components for different dielectric regions in a coaxial line 
azimuthal electric field components for different dielectric regions in a coaxial 
line 
axial electric field components for different dielectric regions in a coaxial line 
effective electric field in a multilayer dielectric, effective electric field vector 
dielectric or breakdown electric field strength 
Faraday rotation per unit length 
magnetic field vector (general) 
magnetic field components in a coaxial line (cylindrical coordinates) 
radial magnetic field components for different dielectric regions in a coaxial line 
azimuthal magnetic field components for different dielectric regions in a coaxial 
line 
axial magnetic field components for different dielectric regions in a coaxial line 
saturation magnetic field for ferromagnetic crystals 
optical intensity 
initial state (maximum) optical intensity 
Bessel function of the first kind of order 0 
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Bessel function of the first kind of order 1 
Bessel function of the first kind of order m 
first derivative of Bessel function of the first kind of order m 
fiber s tress-op tic parameter 
total length of fiber or optical material 
length of fiber in one coil turn 
number of turns of optical fiber 
molecular density 
total number of turns in an optical fiber coil 
total number of delta function interactions or number of close passes of the fiber 
by the conductor 
power (general) 
maximum power handling capacity of a coaxial line 
optical fiber coil radius 
radius of curvature of fiber lead 
amp1 ifier feedback resistance 
radius of short circular fiber loop 
planar surface area 
electromagnetic reflection scattering parameter 
electromagnetic transmission scattering parameter 
absolute temperature 
molecular reorientation time 
Verdet constant 
voltage between conductors in coaxial line 
radial length of an optical fiber lead 
radial distance from center of fiber coil to electrical conductor 
Bessel function of the second kind of order 0 
Bessel function of the second kind of order 1 
Bessel function of the second kind of order m 
first derivative of Bessel function of the second kind of order m 
impedance 
transmission line characteristic impedance 

molecular static polarizability 
attenuation due to conductor losses in a coaxial line 
attenuation due to dielectric losses (absorption) in a coaxial line 
attenuation of higher order modes in a coaxial line 
waveguide (transmission line) propagation constant 
propagation constant for the mnth transmission line mode 
Dirac delta function, dielectric loss angle 
electrical skin depth 
free space wavelength 
permittivity 
relative permittivities for dielectric regions 1 and 2 
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F 

real and imaginary components of relative permittivity 
free-space permittivity 
material relative permittivity (complex quantity) 
static (low frequency) relative permittivity 
effective relative permittivity 
permeability 
free-space permeability 
material relative permeability 
fiber material permeability 
electromagnetic wave impedance 
permittivity constant, E, - 1 
azimuthal angle in cylindrical coordinates 
azimuthal unit  vector 
total birefringence in optical medium 
phase matching parameter in planar waveguide sensor 
radial dimension in cylindrical coordinates 
radial dimension unit vector 
conductivity 
taper angles for the center and outer conductors in a conical transmission line 
launcher 
ratio of time delay to light transit time in a single fiber turn (fraction indicating 
light entry point in the fiber coil) 
number of twists per unit  length in optical fiber 
angular modulation frequency (general) 
cutoff angular frequency of higher order modes in coaxial transmission lines 
cutoff angular frequency (first null) in optical fiber sensor response 
angular resonant frequency 
angular frequency at which rotation relative magnitude is reduced 3 dB 
normalized frequency for optical fiber coil sensor 
normalized frequency for a single-turn fiber sensor 
transit time of light through fiber 
transit time of light through one turn of fiber 
light propagation delay time between fiber coils 
transit time of light through length of fiber 4 
material magnetic ion relaxation time 
normalized frequency parameter for traveling wave sensor 
infinity 

rotary angle between dl and an arbitrary reference point on a fiber loop 
angles in the fiber coil plane used to locate a light segment in a fiber lead 
initial value of CY at time t = 0 
maximum value of the angle P’ 
angle between the magnetic flux density vector B and the fiber length vector dl 
in the plane of the fiber coil 
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rl/ angle between the wave vector k and the fiber length vector dl out of the plane 
of the fiber coil 

ANA 
APD 
BEF 
DC (or dc) 
EM 
EM1 
HOM 
MM 
NE1 
PIN 
RF 
SBP 
SM 
SIN 
SWR 
TE 
T E m n  
TEM 
TM 
TMm 
uv 
Y IG 
Ga: Y IG 

3 dB bandwidth 
change in total fiber length in helical coil 
linear birefringence or retardance per unit length 
twisting rotation per unit length 
rotation in the plane of polarization (general); usually refers to Faraday rotation 
frequency-dependent rotation 
frequency dependent rotations due to delta function interactions 
static or low frequency rotation 
rotations in different segments of fiber 
frequency and material dependent Faraday rotation in paramagnetic crystals and 
glasses 
frequency dependent rotation in short fiber length 
saturation rotation in ferromagnetic material 

automatic network analyzer 
avalanche photodiode 
bandwidth enhancement factor 
direct current 
electromagnetic 
electromagnetic interference 
higher order modes 
multimode (fiber) 
noise equivalent current 
positive-intrinsic-negative 
radio frequency 
sensitivity-bandwidth product 
singlemode (fiber) 
signal-to-noise ratio 
standing wave ratio 
transverse electric 
mnth transverse electric mode 
transverse electromagnetic 
transverse magnetic 
mnth transverse magnetic mode 
ultraviolet 
yttrium iron garnet 
gallium substituted YIG 
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